Sequential Monte-Carlo is a general method of sampling from a sequence of probability distributions .
Category: Monte-Carlo
Multi-Level Monte Carlo (MLMC)
Multi-Level Monte-Carlo is an Monte-carlo method for calculating numerically accurate estimates when fine grained estimates are expensive, but cheap coarse-grained estimates can be used to supplement this. We considered the simulation of stochastic differential equations, which is the application first proposed, but we note that the approach applies in a variety of other settings.
Continue reading “Multi-Level Monte Carlo (MLMC)”Markov Chain Monte Carlo (MCMC)
Markov chain Monte Carlo is a variant of the Monte Carlo, where samples are no longer independent but instead are sampled from a Markov chain. This can be useful in Bayesian statistics, or when we sequentially adjust a small number of parameters for a more complex combined distribution.
We cover MCMC, its use in Bayesian statistics, Metropolis-Hastings, Gibbs Sampling, and Simulated Annealing.
Continue reading “Markov Chain Monte Carlo (MCMC)”Monte-Carlo (MC)
Due to some projects, I’ve decided to start a set of posts on Monte-Carlo and its variants. These include Monte-Carlo (MC), Markov chain Monte-Carlo (MCMC), Sequential Monte-Carlo (SMC) and Multi-Level Monte-Carlo (MLMC). I’ll probably expand these posts further at a later point.
Here we cover “vanilla” Monte-Carlo, importance sampling and self-normalized importance sampling:
Continue reading “Monte-Carlo (MC)”