We argue, in a slightly informal manner, that queueing networks implicitly optimize a utility function subject to constraints on network capacity. We start with the simple example of a closed queueing network and, as we shall discuss, a motivating example is the Transmission Control Protocol which controls the number of packets in transfer on an Internet connection.
Category: Queueing
Distributed Random Access Scheduling
We consider a network of wireless routers. The routers that are close together can interfere if they transmit simultaneously. So schedules need to avoid such collisions. We want each each wireless node to achieve a transmission rates that equals its arrival rate. One might want to implement a policy like MaxWeight or simply estimate the vector of arrival rates and accordingly choose the correct transmission rate. However, this is complicated by the fact that the routers do not know the arrival and transmission rates of their neighbors; all they can do is sense if their neighbors are transmitting or not.
Little’s Law
Here is the long run queue length;
is the expected waiting time;
is the arrival rate at the queue.