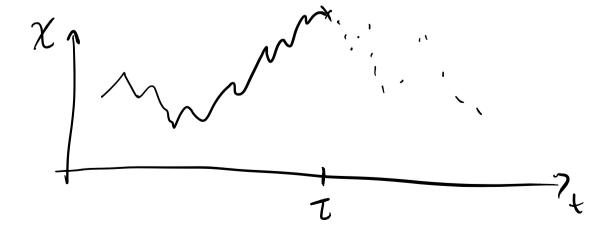
6. OPTIMAL STOPPING

DEFINITION:

An Optimal Stopping Problem is an Markov Decision Process where there are two actions: a = 0 meaning to stop, and a = 1 meaning to continue. Here there are two types of costs

$$c(x,a) = \begin{cases} \kappa(x), & \text{for } a = 0 \\ c(x), & \text{for } a = 1 \end{cases}$$
 (the stopping cost) (the continuation cost),

This defines a stopping problem.



OBTECTIVE:

$$C(x) = \underset{\tau}{\text{MIN}} \mathbb{E} \left[\sum_{t=0}^{\tau-1} c(x_t) + K(x_t) \right]$$

BELLMAN EQUATION:

Assuming that time is finite, the Bellman equation is

$$C_s(x) = \min\left\{k(x), c(x) + \mathbb{E}_x[C_{s-1}(\hat{X})]\right\}$$

for $s \in \mathbb{N}$ and $C_0(x) = k(x)$.

OSLA & CLOSED SETS:

Def 44 (OLSA rule). In the one step lookahead (OSLA) rule we stop when ever $x \in S$ where

$$S = \{x : \underline{k(x)} \le \underline{c(x)} + \underline{\mathbb{E}_x[k(\hat{X})]}\}.$$

We call S the stopping set. In words, you stop whenever it is better stop now rather than continue one step further and then stop.

Def 45 (Closed Stopping Set). We say the set $S \subset X$ is closed, it once inside that said you cannot leave, i.e.

$$P_{xy} = 0$$
, $\forall x \in S, y \notin S$.

Prop 46. If, for the finite time stopping problem, the set S given by the one step lookahead rule is closed then the one step lookahead rule is [i.t. one step left] an optimal policy.

PROOF: BY INDUCTION, IF S=1 THEN OSLA IS OPTIMAL / SUPPOSE OSLA IS OPTIMAL FOR S, [LIE SHOW ITS TRUE FOR S+1].

IF x & S, CLEARLY IS OPTIMAL TO CONTINUE [AS CONTINUIAL 1 MORE STEP & STOPPING IS 7 IF RES, THEN

 $L_{s+1}(x) = M IN \left\{ K(x), C(x) + \mathbb{E}_{x} [C_{s}(x)] \right\}$ RES SINCE S IS CLOSED & SINCE OSLA IS OPTIMAL AT & STEPS

RAES OPTME TO STOP

 $: C_s(\hat{a}) = k(\hat{a})$ = $MIN\{k(x), c(x) + \mathbb{E}[K(\hat{x})]\} = K(x)$

PTIMAL STOPPING W INFINITE TIME:

Prop 47. If the following two conditions hold

•
$$K = \max_{x} k(x) < \infty$$
, $\min_{x} k(x) \ge 0$

•
$$C = \min_{x} c(x) > 0$$

then the One-Step-Lookahead-Rule is optimal.

$$L_{\varsigma}(x) \longrightarrow L_{\omega}(x)$$

$$L_{\infty}(z) = K(z)$$

$$_{\infty}(z) = K(z) \quad \forall x \in S$$

$$L_{\infty}(x) \leq L_{s}(x) \leq L_{\infty}(x) + KP(\tau^{*} \geq s)$$

$$\mathbb{P}(\tau^* \geq s) \leq \int_{\mathbb{R}} \mathbb{E}\left[\left\{\sum_{t=0}^{\tau^{2}-1} c(\alpha_{t}) + K(\alpha_{\tau^{2}})\right\} \mathbb{I}\left[\tau^{*} \geq s\right]\right]$$
This is Bigger than sC

$$\leq \frac{1}{sC} L_{\infty}(x) \leq \frac{K(x)}{sC} \leq \frac{K}{sC}$$

$$\frac{1}{2} \left(\frac{1}{2} \right) \xrightarrow{S \to 0} 0 \quad \therefore \quad L_{S}(2) \to L_{S}(2) \quad \therefore \quad OSU \quad 15$$

SUPPOSE X6 IS A RANDON WALK ON {0,1,2,...,N}

$$X_{t+1} = X_t + 1$$

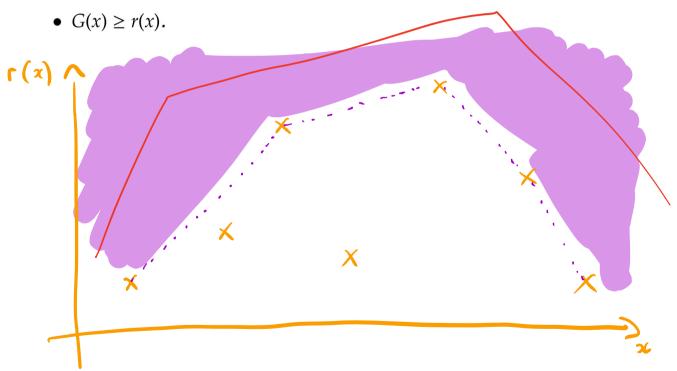
$$X_{t+1} = X_t - 1$$

L PROCESS STOPS IF $X_{\xi}=0$ OR $X_{\xi}=N$ YOU CAN DECIDE TO STOP. IF $X_{\xi}=\infty$ THEN RELIARD IS $\Gamma(\infty) \geq 0$

STOPPING A RANDOM WALK:

Def 48 (Concave Majorant). For a function $r:\{0,...,N\} \to \mathbb{R}_+$ a concave majorant is a function G such that

•
$$G(x) \ge \frac{1}{2}G(x-1) + \frac{1}{2}G(x+1)$$



Prop 49 (Stopping a Random Walk). Let X_t be a symmetric random walk on $\{0,...,N\}$ where the process is automatically stopped at 0 and N. For each $x \in \{0,...,N\}$, there is a positive reward of r(x) for stopping. We are asked to maximize

$$\mathbb{E}[r(X_T)]$$

where T is our chosen stopping time. The optimal value function V(x) is the minimal concave majorant, and that it is optimal to stop whenever V(x) = r(x).

PROOF:

$$V(x) = MAX \left\{ r(x), \frac{1}{2}V(x-1) + \frac{1}{2}V(x+1) \right\}$$

PROOF (CONT): SUPPOSE G(x) IS A CONCAVE MAJORANT. LET $V_s(x) - BE$ S-STEP OPTIML SOLUTION $V_o(x) = \Gamma(2) \quad \therefore \quad V_o(x) \leq G(x)$

$$V_o(x) = \Gamma(2)$$
 : $V_o(x) \leq G(2)$
Suppose [By Induction] $V_s(x) \leq G(2)$

THEN

$$V_{St1}(x) = MAX \left\{ r(x), V_{S}(x-1) + V_{S}(x+1) \right\}$$

$$\leq MAX \left\{ r(x), G(x-1) + G(x+1) \right\}$$

$$= G(x) : V_s(x) \leq G(x) \neq s$$

As value MENATION CONVERGES $V(x) = \coprod_{s \to \infty} V_s(x) \leq G(x)$

. IS MINIMAL CONCAVE MAJGRANT.

3