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Chapter 1

Optimal Control

• Dynamic Programs; Markov Decision Processes; Bellman’s Equa-
tion; Complexity aspects.

• Discrete Time Merton Portfolio Optimization.

• Infinite Time Horizon Control: Positive, Discounted and Nega-
tive Programming.

• Algorithms: Policy Improvement & Policy evaluation; Value It-
eration; Policy Iteration; Temporal Differences and Q-Factors.

• Optimal Stopping; One-Step-Look-Ahead.
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1.1. DYNAMIC PROGRAMMING NSW

1.1 Dynamic Programming

• Definition of Dynamic Program.

• Bellman’s Equation.

The Basic Idea.
Let’s discuss the basic form of the problems that we want to solve.
See Figure 1.1. Here there is a controller (in this case for a com-

Figure 1.1: A control loop.

puter game). It sends actions to an environment (in this case the
computer) which then returns its current state and a reward. Based
on this, the controller selects a new action; the environment then
returns its next state and reward and so on it goes. We want to find
a sequence of actions that maximizes the sum of these rewards.

This interaction between states, actions and rewards are the
key building blocks of dynamic programming, Markov decision pro-
cesses, and much of the topics in rest of these notes. In each of
these, our task is to optimize the sequence of rewards that we re-
ceive over time.

An Introductory Example
Let’s solve a simple dynamic program. In the figure below there is a
tree consisting of a root node labelled R and two leaf nodes colored
grey. For each edge, there is a cost. Your task is to find the lowest
cost path from the root node to a leaf.
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1.1. DYNAMIC PROGRAMMING NSW
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There are a number of ways to solve this, such as enumerating
all paths. However, we are interested in one approach where the
problem is solved backwards, through a sequence of smaller sub-
problems. Specifically, once we reach the penultimate node on the
left (in the dashed box) then it is clearly optimal to go left with a
cost of 1. This solves an easier sub problem and, after solving each
sub problem, we can then attack a slightly bigger problem. If we
solve for each leaf in this way we can solve the problem for the
antepenultimate nodes (the node before the penultimate node).

Thus the problem of optimizing the cost of the original tree can
be broken down to a sequence of much simpler optimizations given
by the shaded boxed below.

1 5 5 6 2 1 0 2

7307

1 1

R

From this we see the optimal path has a cost of 5 and consists of
going right, then left, then right.

Let’s consider the problem a little more generally in the next fig-
ure. The tree on the righthand-side has a lowest cost path of value
Lrhs and the lefthand-side tree has lowest cost Llhs and the edges
leading to each, respective tree, have costs lrhs and llhs. Once the
decision to go left or right is made (at cost lrhs or llhs) it is optimal to
follow the lowest cost path (at cost Lrhs or Llhs). So L, the minimal
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cost path from the root to a leaf node satisfies

L = min
a∈{lhs,rhs}

{la + La} .

l
left R

l
right

L
left L

right

Similarly, convince yourself that the same argument applies from
any node x in the tree network that is

Lx = min
a∈{lhs,rhs}

{
la + Lx(a)

}
.

where Lx is the minimum cost from x to a leaf node and where for
a ∈ {lhs, rhs} x(a) is the node to the lefthand-side or righthand-side of
x. The equation above is an example of the Bellman equation for this
problem, and in our example, we solved this equation recursively
starting from leaf nodes and working our way back to the root node.

The idea of solving a problem from back to front and the idea of
iterating on the above equation to solve an optimisation problem
lies at the heart of dynamic programming.
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Definitions for Dynamic Programming
We now give a general definition of a dynamic programming.

States, actions, rewards and next states. We consider a discrete,
finite set of times t = 0, 1, ...,T. We let x and X denote the state and
set of states. We let xt ∈ X be the state of our dynamic program at
time t. We let a and A denote an action and set of actions. The (in-
stantaneous) reward for taking action a in state x is r(a, x). Further,
r(x) is the reward for terminating in state x at time T.1 If action a is
taken when in state x then the next state in X, which we denote by
x̂, is given by

x̂ = f (x, a), (Plant eq)

for a function f : X × A → A. This is sometimes called the plant
equation of the dynamic program.

Policy, cumulative reward and value function. A policy π = (πt :
t = 0, ...,T−1) choses an action πt at each time t = 0, 1, ...,T−1. Starting
from an initial state x0, a the policy gives a sequence of states

xt+1 = f (xt, πt). (1.1)

We evaluate how a good each policy is by the sum of its rewards:

R(x0, π) := r(x0, π0) + r(x1, π1) + ... + r(xT−1, πT−1) + r(xT)

Given the cumulative reward function R(x, π), we define the value
function to be the maximum reward:

V(x0) = max
π

R(x0, π) .

The main objective of dynamic programming is to solve this opti-
mization. To do this, it helps to consider the future rewards and
value after each time t, which we respectively define by

Rt(xt, π) :=
T−1∑

s=T−t

r(xs, πs) + r(xT) , Vt(xt) := max
π

Rt(xt, π) .

Dynamic ProgramDefinition. We summarize the discussion above
with the following definition.

1Since we do not allow further actions from time T onwards, we can ignore the
dependence on a.
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Def 1 (Dynamic Program). Given initial state x0, a dynamic program
is the optimization

V(x0) := Maximize R(x0, π) :=
T−1∑
t=0

r(xt, πt) + rT(xT) (DP)

subject to xt+1 = f (xt, πt), t = 0, ...,T − 1
over πt ∈ A, t = 0, ...,T − 1

Further, let Rτ(xτ, π) (Resp. Vτ(xτ)) be the objective (Resp. optimal
objective) for (DP) when the summation is started from t = T − τ,
rather than t = 0.

The Bellman Equation
In our introductory example, we saw we could solve a dynamic pro-
gram by a sequence of much simpler optimizations. The resulting
sequence of equations is called the Bellman Equation. The Bellman
equation is central to the study of control problems. The following
result gives shows the optimality of the Bellman Equation for dy-
namic programming.

Thrm 2 (Bellman’s Equation). V0(x) = rT(x) and for t = T − 1, ..., 0

Vt(x) = max
a∈A
{r(x, a) + Vt−1(x̂)} , (Bell eq)

where x ∈ X and x̂ = f (x, a).

Proof. Let πt := (πT−t, ..., πT−1). Note that Rt(x,πt) = r(x, πT−t)+Rt−1(x̂,πt−1).

Vt(x) = max
πt
{Rt(x,πt)} = max

a
max
πt
{r(x, a) + Rt−1(x̂,πt−1)}

= max
a

{
r(x, a) + max

πt−1
Rt−1(x̂,πt−1)

}
= max

a
{r(x, a) + Vt−1(x̂)} .

�

Some Code
Below is some code (in Python) to solve a dynamic program. Notice
we can solve the dynamic program by repeatly calling the function
DP() until the solution is trivial at time=0.
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def DP( time , state , f , r ,A) :
’ ’ ’
Solves a dynamic program
’ ’ ’
i f time > 0 :
Q = [ r [ state ] [ action ] + DP( time−1, f [ state ] [ action ] ) for
action in A ]
V = max(Q)

else :
Q = r [ state ]
V = max(Q)

return V

The Principle of Optimality
Dynamic programming and the Bellman equation was invented by
Richard Bellman. Bellman concisely summarizes why and when we
expect the Bellman equation to hold for an optimization problem:

“Principle of Optimality: An optimal policy has the
property that whatever the initial state and initial deci-
sions are, the remaining decisions must constitute an
optimal policy with regard to the state resulting from the
first decisions." – Richard Bellman [3]

A good example is to see what this means is to consider shortest
paths and longest paths in an undirected graph. See Figure 1.2.
The shortest path from S to D is colored grey. Notice that this con-
tains the shortest path from B to D, i.e. once we get from S to B
what remains of the optimal solution is to take the shortest path
from B to D. Here we see that shortest-path problems satisfy is the
principle of optimality. So, we can apply the dynamic programming
and the Bellman equation to solve shortest path problems.

Notice, however, the longest path (without loops) from D to S
contains B, but this does not take the longest path from B to S.
So we cannot apply dynamic programming to solve longest path
problems on an (undirected) graph.
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Figure 1.2: Shortest path from S to D.

The Curse of Dimensionality
Another term coined by Bellman is The Curse of Dimensionality. Al-
though this used as a generic term applicable to many algorithms, it
is particularly true of dynamic programming. Essentially the point
is that as the size of a dynamic programming problem grows – in
terms of thee number of states and its time horizon – then the com-
putation required to solve the optimization grows in unreasonably
rapidly and usually exponentially. E.g. for our introductory exam-
ple of a tree, if we let there be n nodes that can reached after each
action and let the depth of the tree be T, then the number of Bell-
man equations that we need to solve to find the minimum cost path
from the root node is, roughly, of the order of nT.

Thus to apply the dynamic programming, we need to either con-
sider optimization problems that have additional structure that makes
them easier to solve, or we need to find ways to approximating the
solution to these problems. We will consider both of these ap-
proaches in these notes.

Other Observations
Let’s list a few more properties and smaller observations about dy-
namic programming.

Minimization. Notice we can change the definition of a dynamic
program to minimize costs c(x, a) rather than maximizing rewards
r(x, a). You can check that, in this case, the Bellman equation be-
comes

Lt(x) = min
a∈A

{
c(x, a) + Lt−1(x̂)

}
.

General functions. So far we have assumed that the transition
and reward function depends only on the current state x and the

11
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action taken a. Notice that the Bellman equation holds equally when
we consider rewards that depend on time t and the next state x̂
also. Also we can let the transition function f and the set of actions
depend on time t. This gives the Bellman equation

Vt(x) = max
a∈At

{
rt(x, a, x̂) + Vt+1(x̂)

}
where x̂ = ft(x, a). (You can check that the above “more general" for-
mulation and definition given previously are equivalent by an ap-
propriate choice of state space, action space and rewards.)

Dynamic Programming Examples
Ex 3. An investor has a fund. It has x pounds at time zero. Money
can’t be withdrawn. It pays r×100% interest per-year for T years. The
investor consumes proportion at of the interest and reinvests the rest.
What should the investor do to maximize consumption?

Ex 4. You invest in properties. The total value of these properties is
xt in year t = 1, ...,T. Each year t, you gain rent of rxt and you choose
to consume a proportion at ∈ [0, 1] of this rent. The remaining propor-
tion is reinvested in buying new property. Further you pay mortgage
payments of mxt which are deducted from your consumed wealth.
Here m < r. Your objective is to maximize the wealth consumed over
T years. Prove that if WT−s(x) = xρs for some constant ρs then

ρs = max{r −m + ρs−1, (1 + r)ρs−1 −m}.

Ex 5 (Shortest Paths). Consider a directed graph G = (V,E) each edge
has a cost, ci j for each (i, j) ∈ E. Take a vertex d. Let Li be the length
of the shorest path from i to d and let Li(t) be the shortest path from i
to d that uses t steps.

i) Argue that Li(t) satisfies, Ld(t) = 0 and

Li(t + 1) = min
j:(i, j)∈E

{
ci j + L j(t)

}
, for i , d.

(Here you may assume that Ld(t) = 0 for all t ≥ 0 and Li(t) = ∞ unless
assigned a value in the above set of equalities.)
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ii) In addition to satisfying Ld = 0, argue that Li satisfies the equations

Li = min
j:(i, j)∈E

{
ci j + L j

}
, for i , d.

iii) Your answer to part ii) describes a algorithm called the Bellman-
Ford algorithm. Use it to find the shortest path from node a to node
d in the following graph

a

b c

d

ef

g

4

3

10

6

7

8

3

6

2

4

0

1

Ex 6 (Scheduling). There are N appointments that need to be su-
cessively scheduled over time. Each appointment i = 1, ...,N requires
ti units of time and when completed has reward ri. Given discount
factor β ∈ (0, 1), the total reward arragning the appointments in order
1, 2, ...,N is

R(1, ...,N) = r1β
t1 + r2β

t1+t2 + ... + rNβ
t1+...+tN ,

i) Write down a dynamic program for the optimal discounted reward.
(Here let W(S) be the optimal reward when S ⊂ {1, ...,N} is the remain-
ing set of unassigned appointments.)

ii) Argue that it is optimal to order appointments so that the indices

Gi =
riβti(1 − β)

1 − βti

indexed from highest to lowest.
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Ex 7 (Discrete time LQ-regularization). We consider discrete time LQ
minimization, here you minimize the objective

min
a0,..,aT−1

x>T RxT +

T−1∑
t=0

[x>t Rxt + a>t Qat]

subject to xt+1 = Axt + Btat, t = 0, ...,T − 1

Here R and Q are positive semi-definate matrices.

i) Show that the Bellman equation for this dynamic program is

Lt(x) = min
a

{
x>Rx + a>Qa + Lt+1(Ax + Ba)

}
ii) Assuming the solution is of the form Lt(x) = x>Λtx find the action
that a minimizes the above Bellman equation is given by

a = (Q + B>ΛtB)−1B>ΛtAx

iii) Using your answer to Part ii), show that

Λt−1 = R + A′>ΛtA − (A>ΛtB)(Q + B′ΛtB)−1B′ΛtA.

This is the Riccarti Recursion (the discrete time analogue of the Ric-
carti equation).

Ex 8 (Critical Path Analysis / Longest Paths). A project consists
of a number of tasks that must be completed in a specified order.
This is represented by a directed acyclic graph G = (V,E). Each task
j ∈ V takes an amount of time c( j) to complete and the task cannot
be started until all its parent tasks par( j) = {i : (i, j) ∈ E} have been
completed. We also let ch( j) = {k : ( j, k) ∈ E} be the children of task j.

We let EST( j) and EFT( j) represent the earliest start time and ear-
liest finish time for task j.

i) Show that

EST( j) = max
i∈par( j)

{c(i) + EST(i)} ,

EFT( j) = c( j) + max
i∈par( j)

EFT(i) ,

with EST( j) = 0 and EFT( j) = c( j) if par( j) is empty.
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ii) Let L = max j EFT( j), the time that the project is completed. We let
LST( j) and LFT( j) be the latest start time and latest finish time for
task j (where the project is completed at time L). Give the equivalent
expressions to those found in part i), for the latests start and finish
times.

The critical path is said to be the set of tasks such that

EST(i) = LST(i), EFT(i) = LFT(i)

iii) Find the earliest start and finish times, and then find the latest
start and finish time for the following example:

Task Time Parents
a 1 -
b 3 a
c 1 a
d 2 c
e 1 c
f 3 b,c
g 2 d,e
h 1 f, g

iv) Find the critical path for the example from part iii).

Ex 9 (Forward Dynamic Programming). Notice that in the Bellman
equation we consider

Vt(xt) = max
at,...,aT−1

r(xt, at) + ... + r(xT−1, aT−1) + r(xT)

and we can recursively work out Vt backwards from t = T − 1, ..., 1.
However, suppose that we start with

Ut(xt) = max
a0,...,at−1

r(x0, a0) + r(x1, a1) + ... + r(xt−1, at−1)

where x0 is fixed and it is assume that xt is the next state after taking
action at−1 from state xt−1. (If no such solution – from x0 to xt in t steps
– exists then we set Ut(xt) = −∞)

Show that

Ut(xt) = max
xt−1,at−1: f (xt−1,at−1)=xt

{Ut−1(xt−1) + r(xt−1, at−1)}

15
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and U0(x0) = 0, and notice that

VT(x0) = max
aT−1: f (xT−1,aT−1)=xT

{UT−1(xT−1) + rT(xT)}

This approach to solving a dynamic program is sometimes referred to
as Forward Dynamic Program, because the iteration proceed forward
from their initial state x0.

Show (after reading the section on Markov decision processes),
that we cannot apply this forward dynamic programming approach
to MDPs.

Remark 10. Notice that the above approach has advantages over
the Backward approach taken in the Bellman equaion above that is
because we can start from an initial state x0 and then work out future
states iteratively through taking different actions. This is different
from the backward version where in principle we have to know all the
states that the dynamic programwill go to even if we do not know that
they will actually be visited from state x0 (which may not be feasible
in the case of infinite state-spaces).

References and Further Reading.
Much of the theory of dynamic programming and Markov decision
processes was laid out in the 1950’s by Richard Bellman. An excel-
lent early account of the field by Bellman is [3]. The textbooks of
Whittle [46] and Bertsekas [5] are noteworthy modern treatments
of the field.
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1.2 Markov Chains: A Quick Review

• Discrete-time Markov chains; The Markov property.

• Jump-chain construction; Potential Theory; Martingale Prob-
lems.

Introductory example: snakes and ladders
We highlight some of the key properties of Markov chains: how to
calculate transitions, how the past effects the current movement of
the processes, how to construct a chain, what the long run behavior
of the process may (or may not) look like. We give an initial example
to better position our intuition.

Below in Figure 1.2, we are given a game of snakes and ladders
(or shoots and ladders in the US). Here a counter (coloured red) is
placed on the board at the start. You roll a dice. You move along the
numbered squares by an amount given by the dice. The objective is
to get to the finish. If the counter lands on a square with a snake’s
head, you must go back to the square at the snakes tail and, if
you land on a square at the bottom of a ladder, go to the top of the
ladder.

We let Xt be the position of the counter on the board after the dice
has been thrown t times. The processes X = (Xt : t ∈ Z) is a discrete
time Markov chain. Two things to note: First, note that given the

17
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counter is currently at a state, e.g. on square 5, the next square
reached by the counter – or indeed the sequence of states visited
by the counter after being on square 5 – is not effected by the path
that was used to reach the square. I.e. This is called the Markov
Property. Second, notice each movement of the counter from one
state is a function of two pieces of information the current state
and the independent random roll of the dice. In this way we can
construct (or simulate) the random process.

Definitions
Let X be a countable set. An initial distribution

λ = (λx : x ∈ X)

is a positive vector whose components sums to one. A transition
matrix P = (Pxy : x, y ∈ X) is a postive matrix whose rows sum to one,
that is, for x ∈ X ∑

y∈X

Pxy = 1.

With an initial distribution λ and a transition matrix P, you can
define a Markov chain. Basically λx determines the probability the
process starts in state x Vand Pxy gives the probability of going to y
if you are currently in state x.

Def 11 (Discrete Time Markov Chain). We say that a sequence of
random variables X = (Xt : t ∈ Z+) is a discrete time Markov chain,
with initial distribution λ and transition matrix P if for x0, ..., xt+1 ∈ X,

P(X0 = x0) = λ0

and

P(Xt+1 = xt+1|Xt = xt, ...,X0 = x0) = P(Xt+1 = xt+1|Xt = xt) (Markov)
= Pxtxt+1

The condition (Markov) is often called the Markov property and
is the key defining feature of a Markov chain or, more generally,
Markov process. It states that the past (X1, ...,Xt−1) and future Xt+1

are conditionally independent of the present Xt. Otherwise stated,
is says that, when we know the past and present states (X1, ...,Xt) =

18
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(x0, ..., xt), the distribution of the future states Xt+1,Xt+2, ... is only de-
termined by the present state Xt = xt. Think of a board game like
snakes and ladders, where you go in the future is only determined
by where you are now and not how you got there; this is the Markov
property.

The following proposition shows that the evolution of a Markov
chain can be constructed from its the current state and an inde-
pendent “dice throw".

Prop 12 (Constructing Markov Chains). Take a function f : X ×
[0, 1] → X, X0 a random variable on X, and (Ut)t≥0, independent uni-
form [0, 1] random variables. The sequence (Xt)t≥0 constructed with
the recursion

Xt+1 = f (Xt,Ut) for t = 0, 1, 2, ..

is a discrete time Markov chain. Moreover all discrete time Markov
chains can be constructed in this way.

The following proposition will be useful when we want to sum up
a long sequence of rewards.

Prop 13 (Markov Chains and Potential Functions). For r : X → R be
a bounded function and for β ∈ (0, 1),

R(x) = Ex

 ∞∑
t=0

βtr(Xt)

 (1.2)

is the unique solution to the equation

R(x) = β(PR)(x) + r(x), x ∈ X. (1.3)

Moreover, if function R̃ : X → R+ satisfies

R̃(x) ≥ β(PR̃)(x) + r(x), x ∈ X.

then R̃(x) ≥ R(x), x ∈ X.

Before we embark on the proof a couple of quick remarks.

Remark 14. • Notice the expression (1.3) can equivalently be written
as

R(x) = r(x) + βEx[R(x̂)], ∀x ∈ X.

• For the “moreover” part above we can also switch the inequality.
You can check in the proof that if R̃ is bounded and such that

R̃(x) ≤ β(PR̃)(x) + r(x), x ∈ X.

19
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then R̃(x) ≤ R(x), x ∈ X.
• The reward function can be generalized to the form r(x, x̂), so the
next state is included in the reward. Equation (1.3) now becomes

R(x) = E[r(x, x̂) + βR(x̂)], x ∈ X.

Proof. First note that for R(x) in (1.2)

R(x) = r(x) +Ex

[
βE

[ ∞∑
t=1

βt−1r(Xt)
∣∣∣∣X1

]]
= r(x) +Ex

[
βR(X1)

]
= r(x) + β(PR)(x) .

So R(x) is a solution to (1.3).
Now take any solution R̂ then R̂ − R = βP(R̂ − R). So

||R̂ − R||∞ ≤ β
∑

y

Pxy|R(y) − R(y)| ≤ β||R̂ − R||∞

which, since β < 1, only holds if R̂ = R. So the solution is unique.
Finally, suppose that R̃ is a positive function such that R̃(x) ≥

r(x) + βPR̃(x). Repeated substitution gives

R̃(x) ≥ r(x) + Ex

[
βR̃(X1)

]
≥ ... ≥ Ex

[ T∑
t=0

βtr(Xt)
]

+ βT+1Ex

[
R̃(XT+1)

]
≥ Ex

[ T∑
t=0

βtr(Xt)
]
−−−→
T→∞

R(x).

�

There is a close link between Markov chains and martingales, which
is often useful for analyzing cumulative rewards.

Prop 15. Given a bounded function R : X → R, we define

Mt = R(X0) − βTR(XT) −
T−1∑
t=0

βtr(Xt).

If Mt, t ∈ Z+, is a martingale then

R(x) = Ex

 ∞∑
t=0

βtr(Xt)

 (1.4)

Conversely, if R(x) satisfies (1.4) then Mt, t ∈ Z+, is a martingale.
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Proof. If Mt, t ∈ Z+, then

0 = Ex

[
Mt

]
= R′(Xt) − E

[
βTR′(XT)

]
− E

[ T−1∑
t=0

βtr(Xt)
]

The term E
[
βTR′(XT)

]
goes to zero, by the Dominated Convergence

Theorem. So

R(x) = Ex

[ ∞∑
t=0

βtr(Xt)
]
.

Conversely, if

R(x) = Ex

[ ∞∑
t=0

βtr(Xt)
]
.

then by Prop 13, R(x) = r(x) + βEx[R(X1)]. Applying this gives

E
[
Mt+1 −Mt|Xt

]
= E

[
βtR(Xt) − βt+1R(Xt+1) − βtr(Xt)|Xt

]
= βt

[
R(Xt) − βEXt[R(Xt+1)] − r(Xt)

]
= 0 .

�

Markov Chain Examples.
The following is an alternative formulation of the previous proposi-
tion.

Ex 16. Let ∂X be a subset of X and let T be the hitting time on ∂X i.e.
T = inf{t : Xt ∈ ∂X} and take f : ∂X→ R+ argue that

R(x) = Ex

∑
t<T

r(Xt) + f (XT)I [T < ∞]


solves the equation

R(x) = (PR)(x) + r(x), x < ∂X (1.5)
R(x) = f (x), x ∈ X. (1.6)

There is a close connection between Markov chains and Mar-
tingales that we will want to use later when considering Markov
Decision Processes.
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Ex 17 (Markov Chains and Martingale Problems). Show that a se-
quence of random variables X = (Xt : t ∈ Z+) is a Markov chain if and
only if, for all bounded functions f : X → R, the process

M f
t = f (Xt) − f (X0) −

t−1∑
τ=0

(P − I) f (Xτ)

is a Martingale with respect to the natural filtration of X. Here for any
matrix, say Q, we define

Q f (x) :=
∑
y∈X

Qxy f (y).

References

This section is intended as a brief introductory recap of Markov
chains. A much fuller explanation and introduction is provided in
standard texts e.g. Norris [31], Bremaud [10], or Levin & Peres
[27]. The analysis of rewards and Markov processes is particularly
studied by Doob [14].
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1.3 Markov Decision Processes

• Definition of Markov Decision Process.

• Bellman’s Equation.

Markov decision processes are essentially the randomized equiv-
alent of a dynamic program. Let’s first consider how to randomize
the tree example introduced in Section 1.1.

A Random Example

Below is a tree with a root node and four leaf nodes colored grey.
At the route node you choose to go left or right. This incurs costs
4 and 2, respectively. Further, after making this decision there is
a probability for reaching a leaf node. Namely, after going left the
probabilities are 0.5 & 0.75, and for turning right, the probabilities
are 0.25 & 0.75. For each leaf node there is there is a cost, namely,
2, 3, 6, and 1.

Given you only know the probabilities (and not what happens when
you choose left or right), you’d want to take the decision with lowest
expected cost. The expected cost for left is 4 + 0.5 × 2 + 0.3 × 3 = 5.5
and for right is 2 + 0.25 × 6 + 0.75 × 1 = 4.25. So go right.

Below we now replace the numbers above with symbols. At the
route node you can choose the action to go left or right. These,
respective, decisions incur costs of lleft and lright. After choosing left,
you will move to state A with probability pleft,A or to state B with
probability pleft,B and similarly choosing right states C & D can be
reached with probabilities pleft,C & pleft,D. After reaching node A (resp.
B,C,D) the total expected cost thereafter is LA (resp. LB, LC, LD).
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The cost from choosing “left" is :

lleft + pleft,ALA + pleft,BLB = lleft + Eleft[Lleft]

and the cost for choosing “right" is:

lright + pright,ALA + pright,BLB = lright + Eright[Lright].

The optimal cost is the minimum of these two is

LR = min
a∈{left,right}

{
la + Ea

[
LXa

]}
.

where here the random variable Xa denotes the state in {A,B,C,D}
reached after action is taken. Notice how we abstracted away the
future behaviour after arriving at A, B, C, D. Into a single cost for
each state: LA, LB, LC, LD. And we can propagate this back to get the
costs at the route state R. I.e. we can essentially apply the same
principle as dynamic programming here.
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Definitions
A Markov Decision Process (MDP) is a Dynamic Program where the
state evolves in a random (Markovian) way.

Def 18 (Markov Decision Process). Like with a dynamic program, we
consider discrete times t = 0, 1, ...,T, states x ∈ X, actions a ∈ A and
rewards r(x, a). However, the plant equation and definition of a policy
are slightly different. Like with a Markov chain, the state evolves as
a random function. Here

Xt+1 = f (Xt, at; Ut) ≡ f (Xt, at)

for current state Xt and action at and where (Ut)t≥0 are IIDRVs uniform
on [0, 1]. This is called the Plant Equation.

A policy π choses an action πt at each time t as a function of past
states x0, ..., xt and past actions π0, ..., πt−1. We let P be the set of poli-
cies. A policy, a plant equation, and the resulting sequence of states
and rewards describe a Markov Decision Process.

Rmk 19. As noted in the equivalence above, wewill usually suppress
dependence on Ut. Also, we will use the notation

Ext,at[G(Xt+1)] = E[G( f (xt, at; U))] and Ex,a[G(X̂)] = E[G( f (x, a; U))]

where here and here after we use X̂ to denote the next state (after
taking action a in state x). Notice in both equalities above, the term on
the right depends on only one random variable, U.

Objective is to find a process that optimizes the expected reward.

Def 20 (Markov Decision Problem). Given initial state x0, a Markov
Decision Problem is the following optimization

V(x0) =Maximize RT(x0,Π) := E

T−1∑
t=0

r(Xt, πt) + r(XT)

 (MDP)

over Π ∈ P.

Further, let Rτ(x,Π) (Resp. Vτ(xτ)) be the objective (Resp. optimal ob-
jective) for (MDP) when the summation is started from time t = T − τ
and state XT−τ = x, rather than t = 0 and X0 = x. We often call V to
value function of the MDP.
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The next result shows that the Bellman equation follows essen-
tially as before but now we have to take account for the expected
value of the next state.

Thrm 21 (Bellman Equation). Setting V0(x) = r(x) for t = 1, ...,T

Vt(x) = max
a∈A

{
r(x, a) + Ex,a

[
Vt−1(X̂)

]}
. (Bell eq.)

This equation is Bellman’s equation for a Markov Decision Process.

Proof. Let Pt be the set policies that can be implemented from time
T − t to T. Notice it is the product actions at time t and the set of
policies from time t + 1 onward. [That is Pt = {(πt,Π) : Π ∈ Pt−1, πt :
X

T−t
×A

T−t
→A}.] So

Vt(x) = max
Πt∈Pt

Ex,πT−t

 T−1∑
t=T−t

r(Xt, πt) + r(XT)


= max

πT−t
max
Π∈Pt−1

{
ExT−t,πT−t

[
EXT−t+1,πT−t+1

[
r(xT−t, πT−t) +

T−1∑
τ=T−t+1

r(Xτ, πτ) + r(XT)
]]}

= max
a∈A

{
r(xt, a) + Ex, a

[
max
Π∈Pt−1

EXT−t+1,πT−t+1

[ T−1∑
τ=T−t+1

r(Xτ, πτ) + r(XT)
]

︸                                                 ︷︷                                                 ︸
=Vt−1(X̂)

]}

2nd equality uses structure of Pt, takes the r term out and then
takes conditional expectations. 3rd equality takes the supremum
over Pt−1, which does not depend on πt, inside the expectation and
notes the supremum over πt is optimized at a fixed action a ∈ A (i.e.
the past information did not help us.) �
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MDP Examples
Ex 22. You need to sell a car. At every time t = 0, ...,T − 1, you set a
price pt and a customer then views the car. The probability that the
customer buys a car at price p is D(p). If the car isn’t sold be time T
then it is sold for fixed price VT, VT < 1. Maximize the reward from
selling the car and find the recursion for the optimal reward when
D(p) = (1 − p)+.

Ex 23 (Call Option). You own a call option with strike price p. Here
you can buy a share at price p making profit Xt − p where xt is the
price of the share at time t. The share must be exercised by time T.
The price of stock Xt satisfies

Xt+1 = Xt + εt

for εt IIDRVwith finite expectation. Show that there exists a decresing
sequence {at}0≤t≤T such that it is optimal to exercise whenever Xs ≥ as

occurs.

Ex 24. You own an expensive fish. Each day you are offered a price
for the fish according to a distribution density f (x). You make the
accept or reject this offer. With probability 1−p the fish dies that day.
Find the policy that maximizes the profit from selling fish.

Ex 25. Indiana Jones is trapped in a room in a temple. There are n
passages that he can try and escape from. If he attempts to escape
from passage i ∈ {1, ...,n} then either: he esacapes with probability
pp; he dies with probability qi; or with probability ri = 1 − pi − qi the
passage is a deadend and he returns to the room which he started
from. Determine the order of passages which Indiana Jones must try
in order to maximize his probability of escape.
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1.4 Infinite Time Horizon

• Discounted Programming, Positive Programming, Negative Pro-
gramming, Average Programming.

• Conditions for the Optimality of the Bellman Equation.

Thus far we have considered finite time Markov decision processes.
We now want to solve MDPs of the form

V(x) = maximize
Π∈P

R(x,Π) := Ex0

 ∞∑
t=0

βtr(Xt, πt)

 .
In the above equation the term β is called the discount factor.
We can generalize Bellman’s equation to infinite time, a correct
guess at the form of the equation would, for instance, be

V(x) = max
a∈A

{
r(x, a) + βEx,a

[
V(X̂)

] }
, x ∈ X .

Previously we solvedMarkov Decisions Processes inductively with
Bellman’s equation. In infinite time, we can not directly apply in-
duction; however, we see that Bellman’s equation still holds and we
can use this to solve our MDP.

Discounted Programming
For now we will focus on the case of discounted programming:

Def 26 (Discounted Program). A discounted program is a MDP with
bounded rewards and a discount factor that is smaller than 1

max
x∈X,a∈A

|r(x, a)| < ∞ and β ∈ (0, 1) .

We will cover other cases where β = 1 later. At this point it is
useful define the concept of a Q-factor. A Q-factor of a policy π is
the reward that arises when we take action a from state x and then
follow policy π.
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Def 27 (Q-Factor). The Q-factor of reward function R(·) is the value
for taking action a in state x and then at the next step receiving reward
R(X̂):

QR(x, a) = Ex,a[r(x, a) + βR(X̂))] .

Similarly the Q-factor for a policy π, denoted by Qπ(x, a), is given by
the above expression with R(x) = R(x, π). The Q-factor of the optimal
policy is given by

Q∗(x, a) = max
π

Qπ(x, a).

The following result shows that if we have solved the Bellman
equation then the solution and its associated policy is optimal.

Thrm 28. For a discounted program, the optimal policy V(x) satisfies

V(x) = max
a∈A

{
r(x, a) + βEx,a

[
V(X̂)

] }
.

Moreover, if we find a function R(x) such that

R(x) = max
a∈A

{
r(x, a) + βEx,a

[
R(X̂)

]}
then R(x) = V(x), i.e. the solution to the Bellman equation is unique.
Further given such an R(x), if take a function π(x) such that

π(x) ∈ argmax
a∈A

{
r(x, a) + βEx,a

[
R(X̂)

]}
Then π is optimal and R(x, π) = R(x) = V(x) the optimal value function.

Proof. We will first show that V solves the Bellman equation [with
inequality ≤ then ≥]. Then we will argue that its solution is unique
with a contraction argument. Then we will argue that a stationary
policy associated with a solution is optimal by applying Proposition
13.

We know that Rt(x,Π) = r(x, π0) + βE[Rt−1(X̂, Π̂)]. Applying limits as
t→∞ on both sides and bounded convergence theorem gives that

R(x,Π) = r(x, π0) + βEx,π0

[
R(X̂, Π̂)

]
≤ r(x, π0) + βEx,π0

[
V(X̂)

]
.

For the inequality, above, we maximize R(X̂, Π̂) over Π̂. Now maxi-
mizing the left hand side over Π gives

V(x) ≤ sup
π0∈A

{
r(x, π0) + βEx,π0

[
V(X̂)

]}
.
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At this point we have that the Bellman equation but with an
inequality. We need to prove the inequality in the other direction.
For this, we let πε be the policy that chooses action a and then, from
the next state X̂, follows a policy Π̂ε which satisfies

R(X̂, Π̂ε) ≥ V(Π̂) − ε.

We have that

V(x) ≥ R(x, πε) = r(x, a) + βEx,a

[
R(X̂, Π̂ε)

]
≥ r(x, a) + βEx,a

[
V(X̂)

]
− εβ

The first inequality holds by the sub-optimality of Πε and the second
holds by the assumption on Π̂ε. Maximizing over a ∈ A, and taking
ε→ 0 gives

V(x) ≥ max
a∈A

{
r(x, a) + βEx,a

[
V(X̂)

] }
.

Thus we now have that

V(x) = max
a∈A

{
r(x, a) + βEx,a

[
V(X̂)

] }
.

So at this point we know that the optimal value function satisfies
the Bellman equation. For the next part of the result we need to
show that the solution to this recursion is unique.

Suppose that R(x) is another solution to the Bellman equation.
From the definition of a Q-factor and the Bellman recursion, R(x) =
maxa QR(x, a) and V(x) = maxa QV(x, a). Thus note that

QV(x, a) −QR(x, a) = βE[V(X̂) − R(X̂)] = βE[max
a′

QV(X̂, a) −max
a′

QR(X̂, a′)]

Thus

||QV −QR||∞ ≤ βmax
x̂
|max

a′
QV(x̂, a′) −max

a′
QR(x̂, a′)| ≤ β||QV −QR||∞ .

In the last equality above, we use the fact that

|max
a′

QV(x, a′) −max
a′

QR(x, a′)| ≤ |max
a

QV(x, a) −QR(x, a)|.

This is an elementary result which we prove in Lemma 29 after we
complete this proof. Now since 0 < β < 1 the only solution to this
inequality is QV = QR and thus

R(x) = max
a

QR(x, a) = max
a

QV(x, a) = V(x) .
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So solutions to the Bellman equation are unique for discounted pro-
gramming. Finally we must show that if we can find a policy that
solves the Bellman equation, then it is optimal.

If we find a function R(x) and a function π(x) such that

R(x) = max
a∈A

{
r(x, a) + βEx,a

[
R(X̂)

]}
, π(x) ∈ argmax

a∈A

{
r(x, a) + βEx,a

[
R(X̂)

]}
then note that the MDP induced by π is a Markov chain (with tran-
sition matrix Pπ(x)

xy ). Both R(x, π) and R(x) solve the equation R(x) =

r(x, π(x)) + βEx,π(x)[R(X̂)]. So by Prop 13, R(x) = R(x, π). �

For the above proof we required the following technical lemma.

Lem 29. For any two real valued function f and g

|max
a

f (a) −max
a

g(a)| ≤ max
a
| f (a) − g(a)|

Proof. Clearly it is true that

max
a

b(a) + c(a) ≤ max
a

b(a) + max
a

c(a)

for any two functions b(a) and c(a). Suppose without loss of general-
ity that maxa f (a) ≥ maxa g(a). If we take b(a)+ c(a) = f (a) and b(a) = g(a)
in the above expression then

max
a

f (a) ≤ max
a

g(a) + max
a

f (a) − g(a)

Thus, as required,

|max
a

f (a) −max
a

g(a)| = max
a

f (a) −max
a

g(a)

≤ max
a

f (a) − g(a) ≤ |max
a

f (a) − g(a)|.

�

It is worth collating together a similar result for Q-factors. Given
the facts accrued about value function and Bellman’s equation. The
following Proposition should not be too great a surprise (and can be
skipped on first reading).

Prop 30. a) Stationary Q-factors satisfy the recursion

Qπ(x, a) = Ex,a[r(x, a) + βQπ(X̂, π(X̂))] .
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b) Bellman’s Equation can be re-expressed in terms of Q-factors as
follows

Q∗(x, a) = Ex,a[r(x, a) + βmax
â

Q∗(X̂, â))] .

The optimal value function satisfies

V(x) = max
a∈A

Q∗(x, a).

c) The operation

Fx,a(Q) = Ex,a[r(x, a) + βQπ(X̂, π(X̂))]

is a contraction with respect to the supremum norm, that is,

||F (Q1) − F (Q2)||∞ ≤ ||Q1 −Q2||∞ .

Proof. a) We can think of extending the state space of our MDP to
include states X0 = {(x, a) : x ∈ X, a ∈ A} as well as X. In this new
MDP we can assume that initially the MDP starts in state (x, a) then
moves to the state X̂ ∈ X according to the transition probabilities
Pa

xx̂. There after it remains in X moving according to policy π. Thus
by Prop 13

Qπ(x, a) = Ex,a[r(x, a) + βR(X̂, π)]

where R(x, π) is the reward function of policy π . Further since
Qπ(x, a) is the value from taking a instead of following policy π to
should also be clear that

Qπ(x, π) = Ex,π(x)[r(x, π(x)) + βR(X̂, π)] = R(x, π)

Thus, as required,

Qπ(x, a) = Ex,a[r(x, a) + βQπ(X̂, π(X̂))] .

b) Further it should be clear that the optimal value function for the
extended MDP discussed has a Bellman equation of the form

Q∗(x, a) = Ex,a[r(x, a) + βV(X̂)]

V(x) = max
a∈A
Ex,a[r(x, a) + βV(X̂)]

Comparing the first equation above with the second, it should be
clear that V(x) = maxa Q∗(x, a) and substituting this back into the
first equation gives as required

Q∗(x, a) = Ex,a[r(x, a) + βmax
â∈A

Q∗(X̂, â))] .
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c) The proof of this part is already embedded in the previous Theo-
rem. Note that

Fx,a(Q1) − Fx,a(Q2) = βE[max
a′

QV(X̂, a) −max
a′

QR(X̂, a′)]

Thus

||F (Q1) − F (Q2)||∞ ≤ βmax
x̂
|max

a
Q1(x̂, a) −max

a′
Q2(x̂, a′)| ≤ β||Q1 −Q2||∞ ,

as required. �

Positive Programming?

We now consider case were all rewards are positive and the discount
factor β can be set equal to 1. This is called Positive Programming.
The following result holds for positive programming.

Thrm 31. Consider a positive program the optimal value function
V(x) is the minimal non-negative solution to the Bellman equation

R(x) = max
a∈A

{
r(x, a) + βEx,a

[
R(X̂)

] }
.

Thus if we find a policy π whose reward function R(x, π) satisfies the
Bellman equation. Then it is optimal.

Proof. Suppose that VT(x) is the optimal value function for the posi-
tive program with T time steps. (I.e. we set all rewards equal to zero
from time T onwards.) By Thrm 21, Bellman’s equation holds

VT+1(x) = max
a∈A

{
r(x, a) + βEx,a

[
VT(X̂)

] }
.

with V0(x) = 0. Note VT(x) is increasing in T, since rewards are pos-
itive. Thus, the following limit is well defined V∞(x) = supT VT(x) .
Further note that

V∞(x) = sup
T

max
a∈A

{
r(x, a) + βEx,a

[
VT(X̂)

] }
= max

a∈A

{
r(x, a) + βEx,a

[
sup

T
VT(X̂)

] }
= max

a∈A

{
r(x, a) + βEx,a

[
V∞(X̂)

] }
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Thus V∞(x) satisfies Bellman’s equation.
Note that V(x) ≥ VT(x), since the optimal value function for the

infinite time horizon experiences positive rewards after time T. Thus

V(x) ≥ V∞(x) := lim
T→∞

VT(x).

Further, for any policy Π,

VT(x) ≥ RT(x,Π) .

Now take limits V∞(x) ≥ R(x,Π). Now maximize over Π to see that
V∞(x) ≥ V(x). So V∞(x) equals the optimal value function V(x).

Note that if R(x) is any other positive solution to the Bellman
Equation, then R(x) ≥ V0(x) = 0. And if R(x) ≥ VT(x) then

R(x) = max
a∈A

{
r(x, a) + βEx,a

[
R(X̂)

] }
≥ max

a∈A

{
r(x, a) + βEx,a

[
VT(X̂)

] }
= VT+1(x)

Thus R(x) ≥ limT→∞VT(x) = V(x). So we see that the value function
is the minimal positive solution to the Bellman equation.

Finally, if a policy π is such that R(x, π) solves the Bellman equa-
tion. Then clearly we know that R(x, π) ≤ V(x). But then since
R(x, π) is smaller than the minimal non-negative solution to the Bell-
man equation, and it solves the Bellman equation, it must be that
R(x, π) = V(x) and so the policy is optimal. �

Negative Programming?

We now consider case were all rewards are negative and the dis-
count factor β can be set equal to 1. This could also be consider
to be the case where you minimize positive costs. This is called
Negative Programming.

Def 32. A policy Π is called a stationary policy if its action only de-
pends on the current state (and is non-random and does not depend
on time).

The analogous result to Thrm 31 for Negative programming is weaker.
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Thrm 33. Consider a negative program, minimizing positive costs.
For the minimal non-negative solution to the Bellman equation

L(x) = min
a∈A

{
c(x, a) + βEx,a

[
L(X̂)

] }
, (1.7)

any stationary policy Π that solves the Bellman equation:

π(x) ∈ argmin
a∈A

{
c(x, a) + βEx,a

[
L(X̂)

]}
is optimal.

So the Bellman equation is still correct, but as the above result
suggests, simply finding a solution to the Bellman equation is not
sufficient. We need to find the optimal solution first and then we
need to solve with a stationary policy.

Proof. The first part of the argument is identical proof to Thrm 31:
by considering the limit of value function the finite time horizon
MDP, LT(x)), it can be seen that its limit satisfies the Bellman Equa-
tion

L(x) = min
a∈A

{
l(x, a) + βEx,a

[
L(X̂)

] }
,

and that lim LT(x) = L(x) ≤ C(x) for any other solution to the Bellman
equation. (See the proof of Thrm 31 for more detail.)

Now for a stationary policy, π, that minimizes the Bellman equa-
tion

L(x) = min
a∈A

{
c(x, a) + βEx,a[L(X1)]

}
= c(x, π(x)) + βEx,π(x) [L(X1)]

= c(X0, π(X0)) + βEX0,π(X0)

[
c(X1, π(X1)) + βEX1,π(X1) [L(X2)]

]
= C1(x, π) + β2Ex,π[L(X2)]
...

= CT(x, π) + βTEx,π[L(XT+1)] .

Thus

L(x) = CT(x, π) + βTEx,π[L(xT+1)] ≥ CT(x, π) M.C.T.
−−−−→
T→∞

C(x, π) .

So the policy has lower cost, and thus is optimal. �
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Average Programming?

We now consider a slightly different approach to dynamic program-
ming where costs are not discounted. Suppose that for finite-time
cost function

CT(x0, π) = E
[ T−1∑

t=0

c(xt, πt)
]
.

We look at the limit of the average cost

C̄(π) = lim
T→∞

CT(x0, π)
T

,

if such a limit exists, and attempt to find the minimal such policy.
[We could also maximize rewards if preferred.]

Thrm 34. If there exists a constant λ and a bounded function κ(x)
such that

κ(x) ≤ min
a∈A

{
c(x, a) − λ + Ex,a[κ(x̂)]

}
. (1.8)

Then, for all policies π̃,

lim inf
T→∞

CT(x0, π̃)
T

≥ λ . (1.9)

Moreover, if there exists a stationary policy π(x) such that

κ(x) ≥ c(x, π(x)) − λ + Ex,π(x)[κ(x̂)]

then
lim sup

T→∞

CT(x0, π)
T

≤ λ

and thus the policy π has optimal long-run cost.

Proof. Let

Mt = κ(Xt) +

t−1∑
τ=0

{c(Xτ, π̃τ) − λ} .

Under condition (1.8), Mt is a sub-Martingale:

E[Mt+1 −Mt|Xt = x, π̃t = a] = Ex,a[κ(x̂)] − κ(x) + c(x, a) − λ ≥ 0 .

Thus
κ(x) = E[M0] ≤ E[MT] = E[κ(XT)] − λT + CT(x,Π)
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and so
lim inf

T→∞

CT(x, π̃)
T

≥ λ.x

Under condition (1.9), Mt is a super-Martingale when π̃ = π. So

κ(x) = E[M0] ≥ E[MT] = E[κ(XT)] − λT + CT(x,Π)

and so
lim sup

T→∞

CT(x, π̃)
T

≤ λ.

�

Note we can always add a constant to κ(x) in the above theorem.
So it is worth specifying that κ(x0) = 0 and then we think of κ(x) as
the additional cost for starting in state x instead of state x0.

A Martingale Principle of Optimal Control.
We give a Martingale condition for optimal control. This result is
analogous to Prop 15 which applies to Markov chains.

Prop 35 (A Martingale Principle of Optimal Control.). Consider dis-
counted program. Suppose for a bounded function R : X → R we
define a process (Mt : t ∈ Z+) whose increments, ∆M(Xt) := Mt+1 −Mt,
are given by

∆M(x) = R(x) − βR(x̂) − r(x, π(x))

If Mt is a submartingale for all policies π′ and, for some π, Mt is a
martingale, then π is the optimal policy and R(x) = R(x, π).

Proof. Mt is a submartingale [resp. martingale] iff

Mβ
t :=

∞∑
s=0

βs∆M(Xs)

is a submartingale [resp. martingale]. Taking expectations,

0 ≤ Ex[Mβ
t ] = Ex

[
R(x) − βt+1R(Xt+1) −

t∑
s=0

βsr(Xs, π
′(Xs))

]
Rearranging and letting t→∞ gives, for π′,

R(x) ≥ E
[ ∞∑

s=0

βsr(Xs, π
′(Xs))

]
,
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where the inequality above holds with equality if Mβ
t is a martingale

for some π . Thus we see that R(x) ≥ V(x), where V(x) is the value
function for the MDP and R(x) = V(x) = R(x, π). �
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Infinite Time Examples
Ex 36 (Machine Repair). Each day a machine is either working or
broken. If broken, then the day is spent repairing the machine at a
cost 8c. If themachine is working, then it can be either run unattended
or attended at a cost 0 or c. In each case the probability of the machine
breaking is p and q respectively. Costs are discounted by β ∈ (0, 1).

The objective is to minimize the infinite horizon discounted cost.
Letting F(0) and F(1) be the minimal cost starting on a day were the
machine starts broken or working, respectively. Show that it is opti-
mal to run the machine unattended iff 7p − 8q ≤ β−1.

Ex 37 (Symmetric Random Walk). Consider a symmetric random
walk on Z. We wish to choose a time to stop that minimizes the cost
k(x) = exp{−x} where x gives the value of the walk when stopped. Ar-
gue that Ws(x) the optimal value function for the s-time horizon prob-
lem is constant over s. Argue that

lim
s→∞

Ws(x) ,W(x)

where W(x) is the optimal value function for the infinite time optimal
stopping problem.
(Note for this Negative program we have a solution to the Bellman
equation that is not optimal.)

Ex 38 (Repeat Prisoner’s Dilemma). Two men are taken prisoner by
the authorities. They are interviewed separately and asked to con-
fess to the other prisoners involvement in a crime. A prisoner that
does not confess receives 1 year in prison. A prisoner that confesses
adds 6 years to the other prisoner’s sentence. This game can be ex-
pressed by the matrix

don’t confess confess
don’t confess

confess

(
(1, 1) (7, 0)
(0, 7) (6, 6)

)
For each entry (a, b) in the above matrix the left entry a gives the row
players sentence and b gives the column player’s sentence. Suppose,
given what the other prison does, each prison act selfishly to mini-
mize their time in jail.

i) Argue that the each prisoner will confess.
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We now assume the criminals from the Prisoner’s Dilemma are repeat
offenders. The are repeatedly arrested by the police and interviewed.
Each time they can chose whether to confess or not and afterwards
they find out if their fellow prisoner confessed or not. The payoffs are
the same in our previous example, except each time they meet their
payoffs are discounted by a multiplicative factor (1+r), for some r > 0.

ii) Show that if this repeated game is played for a finite set of times
t = 0, 1, ...,T then it is in the interested of each player to confess at
each time. [Hint: Argue for time T and work backwards].

A punishing strategy is a strategy where the prisoner will not confess
at every round unless his fellow prisoner confesses. If his fellow pris-
oner confesses at one time instance then the prisoner will confesses
for all subsequent time. I.e. the strategy places a heavy penalty on
the opponent for confessing.

iii) If this repeated game is played for an infinite set of times t =
0, 1, 2, 3, ... and if r is suitably small then show that both players play-
ing a punishing strategy is a Nash Equilibrium.

References
The distinction between discounted, positive and negative program-
ming is made by Blackwell [7, 8] and Staunch [37]. Average reward
is considered by Howard [21]. The distinction between these cases
is quite standard in different textbooks for instance see [32]. A early
review of martingale conditions for optimal control is by Davis [13].
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1.5 Algorithms for MDPs

• Policy Improvement; Policy Evaluation.

• Value Iteration; Policy Iteration.

• Temporal Differences; Q-factors.

For infinite time MDPs, we cannot apply to induction on Bellman’s
equation from some initial state – like we could for finite time MDP.
So we need some algorithms to solve MDPs.

At a high level, for a Markov Decision Processes (where the tran-
sitions Pa

xy are known), an algorithm solving a Markov Decision Pro-
cess involves two steps:
• (Policy Improvement) Here you take your initial policy π0 and

find a new improved new policy π, for instance by solving Bell-
man’s equation:

π(x) ∈ argmax
a∈A

{
r(x, a) + βEx,a

[
R(X̂, π0)

]}
• (Policy Evaluation) Here you find the value of your policy. For

instance by finding the reward function for policy π:

R(x, π) = Eπx

 ∞∑
t=0

βtr(Xt, π(Xt))



Value iteration
Value iteration provides an important practical scheme for approx-
imating the solution of an infinite time horizon Markov decision
process.
Def 39 (Value iteration). Take V0(x) = 0 ∀x and recursively calculate

πs+1(x) ∈ argmax
a∈A

{
r(x, a) + βEx,a

[
Vs(X̂)

]}
Vs+1(x) = max

a∈A

{
r(x, a) + βEx,a

[
Vs(X̂)

]}
for s = 1, 2, .. this is called value iteration.
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We can think of the two display equations above, respectively, as
the policy improvement and policy evaluation steps. Notice, that
we don’t really need to do the policy improvement step to do each it-
eration. Notice the policy evaluation step evalutes one action under
the new policy π afterwards the value is Vs(X̂).

The following result shows that Value Iteration converges to the op-
timal policy.

Thrm 40. For positive programming, i.e. where all rewards are pos-
itive and the discount factor β belongs to the interval (0, 1], then

0 ≤ Vs(x) ≤ Vs+1(x)↗ V(x), as s→∞ .

Here V(x) is the optimal value function.

The following lemma is the key property for value iterations conver-
gence, as well as a number of other algorithms.

Lemma 1. For reward function R(x) define

LR(x) = max
a∈A

{
r(x, a) + βEx,a

[
R(X̂)

]}
.

Show that if R(x) ≥ R̃(x) for all x ∈ X then LR(x) ≥ LR̃(x) for all x ∈ X

Proof. Clearly,

r(x, a) + βEx,a

[
R(X̂)

]
≥ r(x, a) + βEx,a

[
R̃(X̂)

]
.

Now maximize both sides over a ∈ A. �

Proof of Thrm 40. Note that V1(x) = maxa r(x, a) ≥ 0 = V0(x). Now, since
Vs+1(x) = LVs(x), repeatedly applying Lemma 1 to the inequality
V1(x) ≥ V0(x) gives that

Vs+1(x) ≥ Vs(x) .

Since Vs(x) is increasing Vs(x) ↗ V∞(x) for some function V∞. We
must show that V∞ is the optimal value function from the MDP.

Next note that Vs(·) is the optimal value function for the finite
time MDP with rewards r(x, a) and duration s. So V(x) ≥ Vs(x) and
thus V(x) ≥ V∞(x). Further, for any policy Π,

Vs(x) ≥ Rs(x,Π) .

Now take limits V∞(x) ≥ R(x,Π). Now maximize over Π to see that
V∞(x) ≥ V(x). So V∞(x) = V(x) as required. �
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Code for Value iteration.
def Value_Iteration (V,P, r , discount , time ) :

’ ’ ’ Value I terat ion − a numerical solution to a MDP

# Arguments :
P − P [ a ] [ x ] [ y ] gives probablity of x −> y for action a
r − r [ a ] [ x ] [ y ] gives reward for x −> y for action a
V − V[ x ] gives value for state x
discount − discount factor
time − number of i terat ions

# Returns :
Value function and policy from value i terat ion

’ ’ ’
number_of_actions = len (P )
number_of_states = len (P [ 0 ] )

Q = np. zeros ( ( number_of_actions , number_of_states ) )

for _ in range ( time ) :
for a in range ( number_of_actions ) :

for x in range ( number_of_states ) :
Q[ a ] [ x ] = np. dot (P [ a ] [ x ] , r [ a ] [ x ]+discount ∗V)

V_new = np.amax(Q, axis=0)

pi = np.argmax (Q, axis=0)

return V_new, pi

44



1.5. ALGORITHMS FOR MDPS NSW

Policy Iteration
We consider a discounted program with rewards r(x, a) and discount
factor β ∈ (0, 1).

Def 41 (Policy Iteration). Given the stationary policy Π, we may de-
fine a new (improved) stationary policy, IΠ, by choosing for each x
the action IΠ(x) that solves the following maximization

IΠ(x) ∈ argmax
a∈A

r(x, a) + βEx,a

[
R(X̂,Π)

]
where R(x,Π) is the value function for policy Π. We then calculate
R(x,IΠ). Policy iteration is the algorithm that takes

Πn+1 = IΠn

Starting from a stationary policy Π0.

R(x) = r(x, π(x)) + βEx,π(x) [R(x̂, π)] , x ∈ X.

If we think of the policy as a matrix P = (Pπxy : x, y ∈ X) and rewards
as a vector r = (r(x, π(x)) : x ∈ X) then R = (R(x) : x ∈ X) is the vector
such that

R = r + βPR

which is solved by R = (I − βP)−1r. I.e. evaluating a policy is really a
little matrix algebra.

Thrm 42. Under Policy Iteration

R(x,Πn+1) ≥ R(x,Πn)

and, for bounded programming,

R(x,Πn)↗ V(x) as n→∞

Proof. By the optimality of IΠ with respect to Π we have

R(x,Π) = r(x, π(x)) + βEx,π(x)

[
R(X̂,Π)

]
≤ r(x,IΠ(x)) + βEx,Iπ(x)

[
R(X̂,Π)

]
Thus from the last part of Thrm 13, we know that R(x,Π) ≤ R(x,IΠ).
This show that Policy iteration improves solutions. Now we must
show it improves to the optimal solution.
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First note that

r(x, a) + βEx,a

[
R(X̂,Π)

]
≤ r(x,Iπ(x)) + βEx,I(x)

[
R(X̂,Π)

]
≤r(x,Iπ(x)) + βEx,IΠ

[
R(X̂,IΠ)

]
= R(x,IΠ).

We can use the above inequality to show that the following process
is a supermartingale

Mt = βtR(Xt,ΠT−t) +

t−1∑
s=0

βsr(Xs, π
∗(Xs))

where π∗(x) is the optimal policy.2 To see taking expectations with
respect to the optimal policy π∗ gives

E∗ [Mt+1 −Mt|Ft]

= βtE∗
[
βR(Xt+1,ΠT−t−1) + r(Xt, π

∗(X)) − R(Xt,ΠT−t)
∣∣∣∣Ft

]
= βtE∗

[
βE∗Xt,π∗(Xt)

[
βR(X̂,ΠT−t−1) + r(Xt, π

∗(Xt)) − R(Xt,ΠT−t)
] ∣∣∣∣Ft

]
≤ 0 .

Since Mt is a supermartingale:

R(x,ΠT) = E∗x [M0] ≥ E∗x [MT] = E∗x
[
βTR(XT,Π0)

]
︸               ︷︷               ︸

−−−→
T→∞

0

+ RT(x,Π∗)︸    ︷︷    ︸
−−−→

T→∞
V(x)

Therefore, as required, limT→∞ R(x,ΠT) ≥ V(x). �

2Note we are implicity assuming an optimal stationary policy exists. We can
remove this assumption by considering a ε-optimal (non-stationary) policy. How-
ever, the proof is a little cleaner under our assumption.
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def Pol icy_I terat ion ( pi ,P , r , discount ) :
’ ’ ’ Pol icy I terat ion − a numerical solution to a MDP

# Arguments :
P − P [ a ] [ x ] [ y ] gives probablity of x −> y for action a
r − r [ a ] [ x ] [ y ] gives reward for x −> y for action a
pi − pi [ x ] gives action for state x
discount − disount factor

# Returns :
pol icy from ∗ ∗one ∗ ∗ policy i terat ion
value function of input policy

’ ’ ’

# Collate array of states and actions
number_of_actions , number_of_states = len (P ) , len (P [ 0 ] )
Actions , States = np. arange ( number_of_actions ) , np. arange (
number_of_states )

# Get transit ions and rewards of pol icy pi
P_pi = np. array ( [ P [ pi [ x ] ] [ x ] for x in States ] )
r_pi = np. array ( [ r [ pi [ x ] ] [ x ] for x in States ] )
Er_pi = [ np. dot ( P_pi [ x ] , r_pi [ x ] ) for x in States ]

# Calculate Value of pi
I = np. ident i ty ( number_of_states )
A = I − discount ∗ P_pi
R_pi = np. l ina lg . solve (A, Er_pi )

# Calculate Q_factors of pi
Q = np. zeros ( ( number_of_actions , number_of_states ) )
for a in range ( number_of_actions ) :

for x in range ( number_of_states ) :
Q[ a ] [ x ] = np. dot (P [ a ] [ x ] , r [ a ] [ x ]+discount ∗R_pi )

# policy i terat ion update
pi_new = np.argmax (Q, axis=0)

return pi_new , R_pi
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MDP Algorithms – Examples
Ex 43. Apply the policy iteration algorithm it to the following problem:

End End

3 1

Here a robot must navigate to either end point. It receives a reward of
3 for reaching the lefthand side and 1 for the righthand side. An initial
policy from which you must start is provided by the arrows above.

Ex 44 (GridWorld). A robot is placed on the following grid.

The robot can chose the action to move left, right, up or down provided
it does not hit a wall, in this case it stays in the same position. (Walls
are colored black.) With probability 0.8, the robot does not follow its
chosen action and instead makes a random action. The rewards for
the different end states are colored above. Write a program that uses,
Value Iteration to find the optimal policy for the robot.

Ex 45 (GridWorld, again). Write a program that uses, Policy iteration
to find the optimal policy for the robot in [44].

Ex 46. Show that for discounted programming,

Vs(x) +
βs+1rmax

1 − β
≥ V(x) ≥ Vs(x) −

βs+1rmin

1 − β
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Ex 47. Here we consider a positive programming problem

a) Let VR give the value function reached after one iteration of the
value iteration algorithm. Argue that if VR = R then R(x) is optimal.

b) Let Iπ give the policy reached after one iteration of the policy im-
provement algorithm. Argue that if Iπ = π then π is optimal.

References.
Value iteration is due to Richard Bellman, and Policy Iteration is due
to Howard [21]. Both are now standard text book methods [5, 32].
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1.6 Optimal Stopping

• Optimal Stopping Problems; One-Step-Look-Ahead Rule.

• The Secretary Problem.

• Infinite Time Stopping; Stopping Random Walks.

An Optimal Stopping Problem is an Markov Decision Process where
there are two actions: a = 0 meaning to stop, and a = 1 meaning to
continue. Here there are two types of costs

c(x, a) =

κ(x), for a = 0 (the stopping cost)
c(x), for a = 1 (the continuation cost),

This defines a stopping problem.
Assuming that time is finite, the Bellman equation is

Cs(x) = min
{
k(x), c(x) + Ex[Cs−1(X̂)]

}
for s ∈N and C0(x) = k(x).

Def 48 (OLSA rule). In the one step lookahead (OSLA) rule we stop
when ever x ∈ S where

S = {x : k(x) ≤ c(x) + Ex[k(X̂)]}.

We call S the stopping set. In words, you stop whenever it is better
stop now rather than continue one step further and then stop.

Def 49 (Closed Stopping Set). We say the set S ⊂ X is closed, it once
inside that said you cannot leave, i.e.

Pxy = 0, ∀x ∈ S, y < S.

Prop 50. If, for the finite time stopping problem, the set S given by the
one step lookahead rule is closed then the one step lookahead rule is
an optimal policy.
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Proof. Given the set S is closed, we argue that if Cs−1(x) = k(x) for x ∈ S
then Cs(x) = k(x):If x ∈ S then since S is closed X̂ ∈ S. In otherwords
Cs−1(X̂) = k(X̂). Therefore, in this case, Bellman’s equation becomes

Cs(x) = min{k(x), c(x) + Ex[Cs−1(X̂)]} = min{k(x), c(x) + Ex

[
k(X̂)

]
} = k(x).

The last inequality above follows by the definition of x ∈ S.
We now proceed by induction. The OSLA rule is optimal for s = 1

steps, since OSLA is exactly the optimal policy for one step.
Suppose that the result is holds for upto s−1 steps. Now consider

the Optimal Stopping Problem with s steps. If x ∈ S then Cs(x) = k(x).
So it is better to stop. If x < S, then clearly it’s better to continue. �

Optimal stopping in infinite time
We now give conditions for the one step look ahead rule to be optimal
for infinite time stopping problems.

Prop 51. If the following two conditions hold

• K = maxx k(x) < ∞, minx k(x) ≥ 0

• C = minx c(x) > 0

then the One-Step-Lookahead-Rule is optimal.

Proof. Suppose that the optimal policy π stops at time τ then

(s + 1)CP(τ > s) ≤ E


 τ−1∑

t=0

c(xt) + k(xτ)

 I[τ > s]

 ≤ k(x0) ≤ K.

Therefore if we follow optimal policy π but for the s time horizon
problem and stop at s if τ ≥ s then

L(x) ≤ Ls(x) ≤ L(x) + KP(τ > s) ≤ L(x) +
K2

C(s + 1)
−−−→
s→∞

L(x)

Thus Ls(x)→ L(x).
As before (for the finite time problem), it is no optimal to stop

if x < S and for the finite time problem Ls(x) = k(x) for all x ∈ S.
Therefore, since Ls(x)→ L(x), we have that L(x) = k(x) for all x ∈ S and
there for it is optimal to stop for x ∈ S. �
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Stopping a Random Walk
The one step lookahead rule is not always the correct solution to an
optimal stopping problem.
Def 52 (Concave Majorant). For a function r : {0, ...,N} → R+ a con-
cave majorant is a function G such that
• G(x) ≥ 1

2G(x − 1) + 1
2G(x + 1)

• G(x) ≥ r(x).
Prop 53 (Stopping a Random Walk). Let Xt be a symmetric random
walk on {0, ...,N} where the process is automatically stopped at 0 and
N. For each x ∈ {0, ...,N}, there is a positive reward of r(x) for stopping.
We are asked to maximize

E[r(XT)]

where T is our chosen stopping time. The optimal value function V(x)
is the minimal concave majorant, and that it is optimal to stop when-
ever V(x) = r(x).
Proof. The Bellman equation is

R(x) = max
{
r(x),

1
2

R(x − 1) +
1
2

R(x + 1)
}

with R(x) = r(0) and R(N) = r(N). Thus the optimal value function is
a concave majorant.

We will show that the optimal policy is the minimal concave ma-
jorant of r(x). We do so by, essentially applying induction on value
iteration. First R0(x) = 0 ≤ G(x) for any concave majorant of r(x). Now
suppose that Rs−1, the function reached after s − 1 value iterations,
satisfies Rs−1(x) ≤ G(x) for all x, then

Rs(x) = max
{
r(x),

1
2

Rs−1(x − 1) +
1
2

Rs−1(x + 1)
}

≤ max
{
r(x),

1
2

G(x − 1) +
1
2

G(x + 1)
}

≤ max {r(x),G(x)} = G(x).

Since value iteration converges Rs(x) ↗ V(x), where V(x) satisfies
V(x) ≤ G(x), as required.

Finally observe that from the Bellman equation the optimal stop-
ping rule is to stop whenever V(x) = r(x) for the minimal concave
majorant. �
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Exercises
Ex 54 (The Secretary Problem). There are N candidates for a secre-
tary job. You interview candidates sequentially. After each interview,
you must either accept or reject the candidate. We assume each can-
didate has the rank: 1, 2, ...,N And arrive for interview uniformly at
random. Find the policy that maximises the probability that you hire
the best candidate.

Ex 55 (Optimal Parking). You look for a parking space on street, each
space is free with probability p = 1 − q. You can’t tell if space is free
until you reach it. Once at space you must decide to stop or continue.
From position s (s spaces from your destination), the cost of stopping
is s. The cost of passing your destination without parking is D.

Ex 56. In a game show a contestant is asked a series of 10 ques-
tions. For each question q = 1, ..., 10 there is a reward rq for answering
the question correctly. With probability pq the contestant answers the
question correctly. After correctly answering a question, the contes-
tant can choose to stop and take their total winnings home or they
can continue to the next question q + 1. However, if the contestant
answers a question incorrectly then the contestant looses all of their
winnings. The probability of winning each round is decreasing and
is such that the expected reward from each round, pqrq, is constant.

i) Write down the Bellman equation for this problem.

ii) Using the One-Step-Look-Ahead rule, or otherwise, find the op-
timal policy of the contestant.

Ex 57 (Burglar). A burglar robs houses over N nights. At any night
the burglar may choose to retire and thus take home his total earn-
ings. On the tth night house he robs has a reward rt where rt is an
iidrv with mean r̄. Each night the probability that he is caught is p
and if caught he looses all his money. Find the optimal policy for the
burglar’s retirement.

Ex 58 (Bruss’ Odds Algorithm). You sequentially treat patients t =
1, ...,T with a new trail treatment. The probability of success is pt =
1−qt. We must minimize the number of unsuccessful treatments while
treating all patients for which the trail is will be successful. (i.e. if we
label 1 for success and 0 for failure, we want to stop on the last 1).
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Argue, using the One-Step-Look-Ahead rule that the optimal policy is
the stop treating at t∗ the largest integer such that

pt∗

qt∗
+ ... +

pT

qT
≥ 1.

This procedure is called Bruss’ Odds Algorithm.

Ex 59. You own an asset that must be sold in T days. Each day you
are offered a price for the asset according to a probability distribution
density f (x). You may the accept any offer that you have received so
far. Once the asset is sold the money is invested in a bank account
which multiplies the invested money by β−1 each day. Here β ∈ (0, 1).
Your task is the maximize your profit at time T.

Ex 60. You own a “toxic" asset its value, xt at time t, belongs to
{1, 2, 3, ...}. The daily cost of holding the asset is xt. Every day the
value moves up to x + 1 with probability 1/2 or otherwise remains the
same at x. Further the cost of terminating the asset after holding it for
t days is C(1 − α)t. Find the optimal policy for terminating the asset.

References.
An early account of optimal stopping is Chow, Robbins and Sieg-
mund [12]. An authoritative texts mostly focusing on stopping dif-
fusions is Shiryaev [35]. Ferguson provides a good step of unpub-
lished notes on his website.3 Again most standard texts on stochas-
tic control cover optimal stopping, see for example Whittle [46].

3https://www.math.ucla.edu/~tom/Stopping/Contents.html
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1.7 LQR and the Kalman Filter
Linear Quadratic Regularization (LQR) is a special case of dynamic
programming where we have a quadratic objective and a linear dy-
namic. [Note many smooth dynamics are linear over small time
steps and smooth objectives are quadratic close to their minimum.]
LQR has a solution with relatively simple form given by the Riccati
equation. It can be generalized in a few different ways: random
noise and incomplete state information. Even in these settings the
optimal control remain essentially the same, however, we may need
to replace the variable state, x with its mean x, this is called cer-
tainty equivalent control. If noise is Gaussian, then estimating x is
a relatively straight forward recursion which is given by the Kalman
filter. We define and discuss each of these steps in subsequent sec-
tions below.

Linear Quadratic Regularization.
Def 61 (Linear Quadratic Regularization). We consider the following
optimization:

V0(x0) =minimize
T−1∑
t=0

{
x>t Rxt + a>t Qat

}
+ x>T RxT (LQR)

subject to xt = Axt−1 + Bat−1, t = 1, ...,T
over a0, ...,aT−1

Here the actions a belong to Rm and the states x belong to Rn. Here A
and B are matrices and R and Q are positive semi-definite matrices.4

The objective above is quadratic and its constraints are linear. For
this reason, this problem is called a Linear Quadratic Regulator prob-
lem and its solution is a Linear Quadratic Regular (LQR).t

Why LQR? This optimization is very common in control. This is
because many dynamical systems are approximately linear [over
small time steps] and many [smooth] objectives are approximately
quadratic when close to their minima. So a wide variety of control
problems are approximately LQR problems.
Riccati Equation. An important recursion that is needed to solve
LQR problems is the Riccati Equation:

4Recall, a matrix M is positive semi-definite if x>Mx > 0 for x , 0.
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Def 62 (Riccati Equation and Gain Matrix). The Riccati equation is
the following matrix recursion

Λt = R + A>Λt+1A − A>Λt+1B[Q − B>Λt+1B]−1B>Λt+1A (Riccati)

for t = 0, ...,T − 1 and with ΛT = R. The gain matrix is defined to be

Gt = [Q + B>ΛtB]−1B>ΛtA (Gain)

Essentially a = −Gtx gives the optimal control at time t.

Solution for LQR. We let Vτ(x) be the optimal solution to (LQR),
where the summation is started from time t = τ in state xτ = x The
following result gives the solution to an LQR problem.

Thrm 63. The value function for (LQR) satisfies

Vt(x) = x>Λtx

where Λt is the solution to the Riccati Equation, see (Riccati). More-
over, the optimal control action is given by

a?t = −Gtxt

where G is the Gain Matrix, see (Gain).

Proof. The Bellman equation is

Lt−1(x) = min
a

{
x>Rx + a>Qa + Lt(Ax + Ba)

}
We now argue by induction that Lt(x) = x>Λtx for all t. This is cer-
tainly true at time T where LT(x) = x>Rx.

Assuming by induction that Lt(x) = x>Λtx, we have that

Lt−1(x) = min
a

{
x>Rx + a>Qa + (Ax + Ba)>Λt(Ax + Ba)

}
= min

a

{
x>Rx + a>Qa + x>A>ΛtAx + 2a>B>ΛtAx + a>B>ΛtBa

}
Differentiating the above objective with respect to a and setting
equal to zero, minimizes the above objective and gives the condi-
tion

0 = 2Qa + 2B>ΛtAx + 2B>ΛtBa

This implies that the optimal action is

a? = −[Q + B>ΛtB]−1B>ΛtAx .
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In other words we see that a?t = −Gtxt, as require above. However, we
still need to verify that Vt−1(x) = x>Λt−1x to complete the induction
step. Substituting our expression for a? into the aboveminimization
gives.

Lt−1(x) = x>Rx + x>A>ΛtAx + a?>Qa? + 2a?>B>ΛtAx + a?>B>ΛtBa?

= x>Rx + x>A>ΛtAx − x>A>ΛtB[Q + B>ΛtB]−1B>ΛtAx
= x>Λt−1x

where the last inequality follows by our definition of Λt−1 from the
Riccati equation. �

LQR with Noise.
We consider a small variation on the LQR problem. In particular
we assume that xt is randomly perturbed. We consider following
optimization:

L0(x0) =minimize
T−1∑
t=0

{
x>t Rxt + a>t Qat

}
+ x>T RxT (Noisy LQR)

subject to xt = Axt−1 + Bat−1 + εt−1, t = 1, ...,T
over a0, ...,aT−1

The only change with respect to (LQR) is that we add a random
variable εt−1. Here we assume that εt is independent over time and
has mean zero and covariance matrix N. That is

E[εt] = 0 and E[ε>t εt] = N.

The next result shows that optimal control remains the same when
we add noise, only the value function changes a little bit.

Thrm 64. The optimal control for the noisy LQR problem is identical
to the LQR problem [without noise] in Theorem 63. The value function
now has the form

Lt(x) = x>Λtx + γt

where γt−1 = tr(ΛtN) + γt and γT = 0.

Proof. The Bellman equation is

Lt−1(x) = min
a

{
x>Rx + a>Qa + E[Lt(Ax + Ba + ε)]

}
.
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We now argue by induction that Lt(x) = x>Λtx + γt for all t. This is
certainly true at time T where LT(x) = x>Rx.

Assuming by induction that Lt(x) = x>Λtx + γt, we have that

Lt−1(x) = min
a

{
x>Rx + a>Qa + E[(Ax + Ba + ε)>Λt(Ax + Ba + ε)] + γt

}
= min

a

{
x>Rx + a>Qa + x>A>ΛtAx + 2a>B>ΛtAx + a>B>ΛtBa

}
+ E[ε>Λtε] + γt

First, observe the minimization above is identical to the LQR mini-
mization in Theorem 63, and so equals xΛt−1x by the proof given in
Theorem 63. Second observe, a quick calculation shows that

E[ε>Λtε] =
∑

i j

E[εiε jΛt,i j] = tr(NΛ).

Thus γt + E[ε>Λtε] = γt−1 as defined above. These two observations
give that

Lt−1(x) = x>Λt−1x + γt−1

as required. �

Linear Quadratic Gaussian.
We consider a Linear Quadratic Regularization problem but were
there is both noise and imperfect state observation. In particular,
we do not directly observe the state x but instead some measure-
ment y which we must use to control x. Further both x and y are
subject to noise.

L0(x0) =minimize
T−1∑
t=0

{
x>t Rxt + a>t Qat

}
+ x>T RxT (LQG)

subject to xt = Axt−1 + Bat−1 + εt−1,

yt = Cxt−1 + δt−1 t = 1, ...,T
over a0, ...,aT−1

In addition to terms in definition of LQR and LQR with Noise, we
introduce a matrix C and a noise term δt which is independent over
time, has mean zero and covariance M, that is

E[δ] = 0, and E[δδ>] = M .
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Later [when considering the Kalman Filter], we will need the ran-
dom variables for δ and ε to be Gaussian [hence the name LQG] but
we do not require this yet.

Here the state x is not directly observed. So we must base deci-
sions from data of past decision and measurements, that is

Ft = (yt, ...,y1,at−1, ...,a0) .

Result on LQG. The key result on LQG is that if we can estimate
the mean state given Ft, i.e. xt := E[x|Ft], then the optimal control
is that same as from the LQR problem i.e. a? = −Gx̄t.
Thrm 65. For an LQG problem the optimal control at time t is

a?t = −Gtx̄t

where x̄t = E[xt|Ft] and Gt is (Gain). Further, the optimal value func-
tion is

Lt(Ft) = E[x>t Λtxt|Ft] + It + γt

where

It =

T−1∑
τ=t

E
[
∆>τ (R + A>Λτ+1A −Λτ)∆τ|Ft

]
and ∆t = xt − x̄t .

Before proving this result, we take a moment to discuss.
Certainty Equivalence. The last result is interesting because even
though there is noise and we do not observe the system state. We
still apply the same control as in the case where we have full infor-
mation for a deterministic system. When we treat the mean as if it
was the "true" state, we call this certainty equivalence.

In general applying a certainty equivalent estimate is not opti-
mal, bit it is for LQG systems. So why is certainty equivalence op-
timal here. In particular, if we look at the new term It in the value
function, it looks like we need to estimate future values of ∆τ which
in principle should depend on the future actions and states that
we visit. This would likely make for a complex dependence on the
current action taken. However, it turns out, because the problem
is linear, that ∆t does not depend on the actions and states taken.
So in the Bellman equation It is effectively a constant as far as the
action taken is concerned. This simplifies the problem consider-
ably and means we are still within the scope of our original LQR
solution.

The following lemma shows that ∆t does not depend on actions
taken and states visited.
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Lemma 2. ∆τ is a constant with respect to a0, ...,aτ.

Proof. We recursively consider the update equation for xτ. Note that

xτ = Axτ−1 + Baτ−1 + ετ−1

= A[Axτ−2 + Baτ−2 + ετ−2] + Baτ−1 + ετ−1

= A2xτ−2 + ABaτ−2 + Baτ−1 + Aετ−2 + ετ−1

...

= Aτx0 +

τ−1∑
t=0

Aτ−1−tBat +

τ−1∑
t=0

Aτ−1−tεt .

Consequently notice,

x̄τ = E[xτ|Fτ] = Aτx0 +

τ−1∑
t=0

Aτ−1−tBat + E
[ τ−1∑

t=0

Aτ−1−tεt

∣∣∣∣∣Fτ]
So

xτ − x̄τ =

τ−1∑
t=0

Aτ−1−tεt − E
[ τ−1∑

t=0

Aτ−1−tεt

∣∣∣∣∣Fτ] .
It seems like we are done, we have removed all dependence on the
actions taken. But remember Ft = (yt, ...,y1,at−1, ...,a0) which we con-
dition on above. In principle, we could modify the set of actions that
we take to infer information about

∑τ−1
t=0 Aτ−1−tεt and thus there would

be dependence on the actions taken in the conditional expectation
above. However, this turns out not to be the case.

To see this, first, let y0
t be the sequence of observations made

when actions are chosen to be zero, that is, since

yt = Cxt = CAτx0 +

τ−1∑
t=0

CAτ−1−tBat +

τ−1∑
t=0

CAτ−1−tεt

then y0
t is given by

y0
t = CAτx0 +

τ−1∑
t=0

CAτ−1−tεt + δt

Since we know which actions we take we can always construct y0
t

from yt and vice versa. I.e. conditioning on Ft = (yt, ...,y1,at−1, ...,a0)
is the same as conditioning on F0

t = (y0
t , ...,y

0
1 ,at−1, ...,a0). Further,
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suppose we let π be the policy that we use to select the actions. In
particular, suppose that at = π(Ft) where here π is some determinis-
tic function. However given the discussion above, equally we could
view actions as a function of F0

t , that is at = π0(F0
t ) where π0 is again a

deterministic. Thus all information required to choose each action
is determined by the function π0 and the vectors (y0

t , ...,y
0
1). In other

words, conditioning on F0
t is the same as conditioning on (y0

t , ...,y
0
1)

and the deterministic function π0. However, π0 is deterministic and
thus independent of the random variable

∑τ−1
t=0 Aτ−1−tεt, thus it plays

no role in determining its conditional expectation. In summary we
have found that

E
[ τ−1∑

t=0

Aτ−1−tεt

∣∣∣∣∣Fτ] = E
[ τ−1∑

t=0

Aτ−1−tεt

∣∣∣∣∣F0
τ

]
= E

[ τ−1∑
t=0

Aτ−1−tεt

∣∣∣∣∣y0
t , ...,y

0
1 , π

0
]

= E
[ τ−1∑

t=0

Aτ−1−tεt

∣∣∣∣∣y0
t , ...,y

0
1

]
The right hand expression does not depend on the action taken and
so the same is true of

xτ − x̄τ =

τ−1∑
t=0

Aτ−1−tεt − E
[ τ−1∑

t=0

Aτ−1−tεt

∣∣∣∣∣Fτ] .
�

A further slightly more minor observation is the following Lemma.

Lemma 3.
E[x>t Mxt|Ft] = x̄>t Mx̄t − E[∆>t M∆t|Ft]

Proof.

E[x>t Mxt|Ft] = E[(x̄t + ∆)>M(x̄t + ∆)|Ft]
= x̄tMx̄t + 2x̄tME[∆t|Ft] + E[x>t Mxt|Ft]
= x̄>t Mx̄t − E[∆>t M∆t|Ft]

�

Proof of Theorem 65 We can now use the above lemma to prove
Theorem 65.
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Proof of Theorem 65. The result of the Theorem is certainly true at
time T, where L(FT) = x>T RxT. Let’s work back inductively assuming
the form Lt+1(Ft+1) holds to prove the result.

Lt(Ft) = min
at
E[x>t Rxt + a>t Qat + Lt+1(Ft+1)|Ft]

= min
at
E
[
x>t Rxt︸ ︷︷ ︸

(a)

+a>t Qat + E
[
x>t+1Λt+1xt+1|Ft+1

]
︸                   ︷︷                   ︸

(b)

+ It+1 + γt+1︸     ︷︷     ︸
(c)

∣∣∣Ft

]

Let’s deal with the three terms (a), (b) and (c) above.
Firstly, for (a) we have by Lemma 3 that

E[x>t Rxt|Ft] = x̄>t Rx̄t + E[∆>t R∆t|Ft]

Second, for term (b):

E
[
x>t+1Λt+1xt+1

∣∣∣Ft+1

]
= E

[
(Axt + Bat + εt)>Λt+1(Axt + Bat + εt)

∣∣∣Ft+1

]
= E[x>t A>Λt+1Axt|Ft] + 2x̄tA>Λt+1Bat + aB>Λt+1Ba + tr(NΛt+1)
= x̄>t A>Λt+1Ax̄t + E[∆>t A>Λt+1A∆t|Ft]

+ 2x̄tA>Λt+1Bat + aB>Λt+1Ba + tr(NΛt+1)

Third, for term (c),

E[It+1 + γt+1|Ft] =

T−1∑
τ=t+1

E
[
E
[
∆>τ (R + A>Λτ+1A −Λτ)∆τ

∣∣∣Ft+1

]∣∣∣∣Ft

]
+ γt+1

=

T−1∑
τ=t+1

E
[
∆>τ (R + A>Λτ+1A −Λτ)∆τ

∣∣∣∣Ft

]
+ γt+1 .

Applying the last three terms to Lt(Ft), above, we get that

Lt(Ft)
= min

a

{
x̄>t Rx̄t + a>Qa + x̄>t A>Λt+1Ax̄t + 2a>B>Λt+1Ax̄t + a>B>Λt+1Ba

}
+ E[∆>t [R + A>Λt+1A]∆t|Ft] +

T−1∑
τ=t+1

E
[
∆>τ (R + A>Λτ+1A −Λτ)∆τ

∣∣∣∣Ft

]
+ tr(NΛt+1) + γt+1

Critically, we have applied Lemma 2, to take terms involving ∆t from
the minimization. An important consequence is that the minimiza-
tion above is the same as for deterministic LQR problems. So the
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optimal control is a?t = −Gx̄t, by the same calculation done in Theo-
rem 63. So it is equal to x̄>t Λtx̄t. So applying this and Lemma , i.e.
that x̄tΛtx̄t = E[x>t Λtxt|Ft] − E[∆>t Λt∆t|Ft]. This gives that

Lt(Ft)
= E[x>t Λtxt|Ft]

+ E[∆>t [R + A>Λt+1A −Λt]∆t|Ft] +

T−1∑
τ=t+1

E
[
∆>τ (R + A>Λτ+1A −Λτ)∆τ

∣∣∣∣Ft

]
+ tr(NΛt+1) + γt+1

= E[x>t Λtxt|Ft] + It + γt ,

where we apply the definitions of It and γt. This gives the required
expression of Lt(Ft). �

Kalman Filter
Kalman filtering (and filtering in general) considers the following
setting: we have a sequence of states xt, which evolves under ran-
dom perturbations over time. Unfortunately we cannot observe xt,
we can only observe some noisy function of xt, namely, yt. Our task
is to find the best estimate of xt given our observations of yt.

Consider the equations

xt+1 = Axt + Bat + εt

yt+1 = Cxt+1 + δt+1 .

where εt ∼ N(0,Σε), δt+1 ∼ N(0,Σδ) and εt and νt are independent. (We
let Σε be the sub-matrix of the covariance matrix corresponding to
ε and so forth...)

The Kalman filter has two update stages: a prediction update
and a measurement update. These are

x̄t+1 | t = Ax̄t+1 | t + Bat (Predict-1)
Pt+1 | t = APt | tA> + Σε

t (Predict-2)

and

x̄t+1 = x̄t+1 | t + Kt(yt+1 − Cx̄t+1 | t) (Measure-1)
Pt+1 = Pt+1 | t − KtCPt+1 | t (Measure-2)
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where

Kt = Pt+1 | tC>(CPt+1|tC> + Σδ
t ) .

The matrix Kt is often referred to as the Kalman Gain. Assuming
the initial state x0 is known and deterministic P0|0 = 0 in the above.

We will use the following proposition, which is a standard re-
sult on normally distributed random vectors, variances and covari-
ances,

Prop 66. Let u be normally distributed vector with mean ū and co-
variance Σu, i.e.

u ∼ N(ū,Σu) .

i) For any matrix A and (constant) vector c, we have that

Au + c ∼ N(Aū + c,AΣuA>) .

ii) If we take u = (v,w) then w conditional on v gives

(w|v) ∼ N(w̄ + ΣwvΣ
−1
vv (v − v̄),Σww − ΣwvΣ

−1
vv Σvw)

iii) Var(Au) = AΣuA>, Cov(Au,Bu) = AΣuB>.

We can justify the Kalman filtering steps by proving that the
conditional distribution of xt+1 is given by the Prediction and mea-
surement steps. Specifically we have the following.

Thrm 67.

[xt+1|y[0:t],a[0:t]] ∼ N(x̄t+1|t,Pt+1|t)
[xt+1|y[0:t+1],a[0:t]] ∼ N(x̄t+1,Pt+1)

where y[0:t] := (y0, ...,yt) and a[0:t] := (a0, ...,at). Thus

E[x̄t+1|Ft+1] = x̄t+1

where x̄t+1 is given by (Measure-1).

Proof. We show the result by induction supposing that

[xt|y[0:t],a[0:t−1]] ∼ N(x̄t,Pt) .
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Since xt+1 is a linear function of xt, we have that

[xt+1|y[0:t],a[0:t]] ∼ N(x̄t+1|t,Pt+1|t) .

where, by Prop 66ii), we have that

x̄t+1|t = Ax̄t + Bat , Pt+1|t = APtA> + Σε .

Given yt+1 = Cxt+1 +δt, we have by Prop 66iii) that Var(yt+1|y[0,t],a[0,t]) =
CPt+1|tC> and Cov(xt+1,yt+1|y[0,t],a[0,t]) = Pt+1|tC>. Thus

[(xt+1,yt+1)|y[0:t],a[0:t]] ∼ N
(
[x̄t+1|t,Cx̄t+1|t],

[
Pt+1|t Pt+1C>

CPt+1|t CPt+1C> + Σδ
t

)]
.

Thus applying Prop 66ii), we get that

[xt+1|y[0:t+1], a[0:t]] = [[xt+1|y[0:t], a[0:t]]|yt+1]

∼ N

(
x̄t+1|t + Pt+1|tC>[CPt+1C> + Σδ

t ]−1(yt+1 − Cx̄t+1|t) ,

Pt+1|t − Pt+1|tC>[CPt+1|tC> + Σδ
t ]−1CPt+1|t

)
.

That is, as required, [xt+1|y[0:t+1],a[0:t]] ∼ N(x̄t+1,Pt+1) for

x̄t+1 = x̄t+1 | t + Kt(yt+1 − Cx̄t+1 | t)
Pt+1 = Pt+1 | t − KtCPt+1 | t

where Kt = Pt+1 | tC>(CPt+1|tC> + Σδ
t ) . �

References
Bucy and Kalman developed the Kalman filter [11]. It is used exten-
sively in control theory, for a recent text see Grenwal and Andrews
[18]. For a machine learning and Bayesian perspective see Murphy
[30].
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Chapter 2

Continuous Time Control
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2.1. CONTINUOUS TIME DYNAMIC PROGRAMMING NSW

2.1 Continuous Time Dynamic Programming

• The Hamilton-Jacobo-Bellman equation; a heuristic deriva-
tion; and proof of optimality.

• Linear Quadratic Regularization.

Discrete time Dynamic Programming was given in Section 1.1. We
now consider the continuous time analogue.

Time is continuous t ∈ R+; xt ∈ X is the state at time t; at ∈ A is
the action at time t; Given function f : X×A → X, the state evolves
according to a differential equation

dxt

dt
= f (xt, at). (2.1)

This is called the Plant Equation. A policy π chooses an action πt

at each time t. The (instantaneous) cost for taking action a in state
x at time t is c(a, x) and c(x) is the reward for terminating in state x
at time T.

Def 68 (Dynamic Program). Given initial state x0, a dynamic program
is the optimization

L(x0) := Minimize C(a) :=
∫ T

0
e−αtc(xt, at)dt + e−αTc(xT) (DP)

subject to
dxt

dt
= f (xt, at), t ∈ R+

over at ∈ A, t ∈ R+

Further, let Cτ(a) (Resp. Lτ(xτ)) be the objective (Resp. optimal objec-
tive) for (2.1) when the summation is started from t = τ, rather than
t = 0.

When a minimization problem where we minimize loss given the
costs incurred is replaced with a maximization problem where we
maximize winnings given the rewards received. The functions L, C
and c are replaced with notation W, R and r.
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Def 69 (Hamilton-Jacobi-Bellman Equation). For a continuous-time
dynamic program (2.1), the equation

0 = min
a∈A

{
c(x, a) + ∂tLt(x) + f (x, a)∂xLt(x) − αLt(x).

}
(HJB)

is called the Hamilton-Jacobi-Bellman equation. It is the continuous
time analogoue of the Bellman equation [2].

A Heuristic Derivation of the HJB Equation

We now argue why the Hamiliton-Jacobi-Bellman equation is a good
candidate for the Bellman equation in continuous time.

A good approximation to the plant equation (2.1) is

xt+δ − xt = δ f (xt, at) (2.2)

for δ > 0 small, and a good approximation for the objective is

C(a) :=
∑

t∈{0,δ,...,(T−δ)}

(1 − αδ)t/δc(xt, at)δ + (1 − αδ)t/δc(xT) (2.3)

This follows from the definition of the Riemann Integral and we fur-
ther use the fact that (1 − αδ)t/δ

→ e−αt as δ→ 0.
The Bellman equation for the discrete time dynamic program

with objective (2.3) and plant equation (2.2) is

Lt(x) = min
a∈A

{
c(x, a)δ + (1 − αδ)Lt+δ(xt + δ f (x, a))

}
If we minus Lt(x) from each side in this Bellman equation and

then divide by δ and let δ→ 0 we get that

0 = min
a∈A

{
c(x, a) + ∂tLt(x) + f (x, a)∂xLt(x) − αLt(x) ,

}
where here we note that, by the Chain rule,

(1 − αδ)Lt+δ(x + δ f ) − Lt(x)
δ

−−−→
δ→0

∂tLt(x) + f (x, a)∂xLt(x) − αLt(x).

Thus we derive the HJB equation as described above.

The following result shows that if we solve the HJB equation then
we have an optimal policy.

68



2.1. CONTINUOUS TIME DYNAMIC PROGRAMMING NSW

Thrm 70 (Optimality of HJB). Suppose that a policy Π has a value
function Ct(x,Π) that satisfies the HJB-equation for all t and x then,
Π is an optimal policy.

Proof. Using shorthand C = Ct(x̃t,Π):

−
d
dt

(
e−αtCt(x̃t,Π)

)
= e−αt {c(x̃t, π̃t) −

[
c(x̃t, π̃t) − αC + f (x̃t, π̃t)∂xC + ∂tC

]}
≤ e−αtc(x̃t, π̃t)

The inequality holds since the term in the square brackets is the
objective of the HJB equation, which is not maximized by π̃t. �
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Linear Quadratic Regularization
Def 71 (LQ problem). We consider a dynamic program of the form

Minimize
∫ T

0
[xtQxt + atRat] dt + xTQTxT (LQ)

subject to
dxt

dt
= Axt + Bat, t ∈ R+

over at ∈ R
m, t ∈ R+.

Here xt ∈ Rn and at ∈ Rm. A and B are matrices. Q and R symmet-
ric positive definite matrices. This an Linear-Quadratic problem (LQ
problem).

Def 72 (Riccarti Equation). The differential equation with

Λ̇(t) = −Q−Λ(t)A−A>Λ(t) + Λ(t)BR−1B>Λ(t) and Λ(T) = QT. (RicEq)

is called the Riccarti equation.

Thrm 73. For each time t, the optimal action for the LQ problem is

at = −R−1B>Λ(t)xt ,

where Λ(t) is the solution to the Riccarti equation.

Proof. The HJB equation for an LQ problem is

0 = min
a∈Rm

{
x>Qx + a>Ra + ∂tLt(x) + (Ax + Ra)>∂xLt(x)

}
We now “guess" that the solution to above HJB equation is of the
form Lt(x) = x>Λ(t)x for some symmetric matrix Λ(t). Therefore

∂xLt(x) = 2Λ(t)x and ∂tLt(x) = x>Λ̇(t)x

Substituting into the Bellman equation gives

0 = min
a∈Rn

{
x>Qx + a>Ra + x>Λ̇(t)x + 2x>Λ(x)(Ax + Ba)

}
.

Differentiating with respect to a gives the optimality condition

2Ra + 2x>Λ(t)B = 0

which implies
a = −R−1B>Λ(t)x .
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Finally substituting into the Bellman equation, above, gives the ex-
pression

0 = x>
[
Q + Λ̇(t) + Λ(t)A + A>Λ(t) −Λ(t)BR−1B>Λ(t)

]
x .

Thus the solution to the Riccarti equation has a cost function that
solves the Bellman equation and thus by Theorem 70 the policy is
optimal. �
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2.2 Stochastic Integration

• Heuristic derivation of the Stochastic Integral and Itô’s for-
mula.

What follows is a heuristic derivation of the Stochastic Integral,
Stochastic Differential Equations and Itô’s Formula.

First note that for (Bt : t ≥ 0) a standard Brownian motion argue
that, for all T and for δ sufficiently small and positive,∑

t∈{0,δ,..,T}

(Bt+δ − Bt) = BT and
∑

t∈{0,δ,..,T}

(Bt+δ − Bt)
2
≈ T (2.4)

The 1st sum is an interpolating sum. By independent increments
property of Brownian motion, the 2nd sum adds IIDRVs with each
with mean δ. Thus the strong law of large numbers gives the ap-
proximation. From this it is reasonable to expect that∑

t∈{0,δ,..,T}

σ(Xt) (Bt+δ − Bt) ≈
∫ T

0
σ(Xt)dBt

and ∑
t∈{0,δ,..,T}

µ(Xt) (Bt+δ − Bt)
2
≈

∫ T

0
µ(Xt)dt.

The first sum, above, is approximation from a Riemann-Stieltjes
integral, i.e. ∫ T

0
f (t)dg(t) ≈

∑
t∈{0,δ,..,T}

f (t)(g(t + δ) − g(t)).

So one might expect a integral limit. (This is unrigorous because
Riemann-Stieltjes Integration only applies to functions with finite
variation – while Brownian motion does not have finite variation.)
The second sum is a Riemann integral upon using the approxima-
tion (Bt+δ − Bt)

2
≈ δ. This is, very roughly, how a stochastic integral

is defined.
We can also define stochastic differential equations. If we induc-

tively define Xt by the recursion

Xt+δ − Xt = σ(Xt)(Bt+δ − Bt) + µ(Xt)δ, t = 0, δ, 2δ, .... (2.5)
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then, by summing over values of t ∈ {0, δ, ....,T − δ}, we expect Xt to
approximately obey an equation of the form

XT = X0 +

∫ T

0
σ(Xt)dBt +

∫ T

0
µ(Xt)dt.

This gives a Stochastic Differential Equation.
Often in differential and integration, we apply chain rule, d f (xt)

dt =

f ′(xt)dxt
dt . Ito’s the analogous result for Stochastic Integrals. Let Xt

be as above. For a twice continuously differentiable function f and
δ > 0 small, we can apply a Taylor approximation

f (Xt+δ) − f (Xt)
= f (Xt + σ(Xt)(Bt+δ − Bt) + µ(Xt)δ) − f (Xt)

= f ′(Xt)
{
µδ + σ · (Bt+δ − Bt)

}
+

f ′′(Xt)
2

{
µδ + σ · (Bt+δ − Bt)

}2
+ o(δ)

= f ′(Xt)
{
µδ + σ · (Bt+δ − Bt)

}
+

f ′′(Xt)
2

σ2
· (Bt+δ − Bt)2 + o(δ)

In the last equality we use that (Bt+δ−Bt) = o(δ1/2) (which follows from
(2.4)). Thus we see that

f (Xt+δ) − f (Xt) ≈
[

f ′(Xt)µ(Xt) +
σ(Xt)2

2
f ′′(Xt)

]
δ + f ′(Xt)σ(Xt) (Bt+δ − Bt) .

Consequently we expecrt that f (Xt) obeys the following Stochastic
Differential Equation:

f (XT) − f (X0) =

∫ T

0

[
f ′(Xt)µ(Xt) +

σ(Xt)2

2
f ′′(Xt)

]
dt +

∫ T

0
f ′(Xt)σ(Xt)dBt.

This is Ito’s formula.
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2.3 Diffusion Control Problems

• The Hamilton-Jacobi-Bellman Equation.

• Heuristic derivation; Davis-Varaiya Martingale Principle of Op-
timality.

We consider a continuous time analogue of Markov Decision Pro-
cesses from Section 1.3.

Time is continuous t ∈ R+; Xt ∈ Rn is the state at time t; at ∈ A is
the action at time t.

Def 74 (Plant Equation). Given functions µt(Xt, at) = (µi
t(Xt, at) : i =

1, ..,n) and σt(Xt, at) = (σi j
t (Xt, at) : i = 1, ..,n, j = 1, ...,m), the state evolves

according to a stochastic differential equation

dXt = µt(Xt, at)dt + σt(Xt, at) · dBt

where Bt is an m-dimensional Brownian motion. This is called the
Plant Equation.

A policy π chooses an action πt at each time t. (We assume that πt is
adapted and previsible.) Let P be the set of policies. The (instanta-
neous) cost for taking action a in state x at time t is ct(a, x) and cT(x)
is the cost for terminating in state x at time T.

Def 75 (Diffusion Control Problem). Given initial state x0, a dynamic
program is the optimization

L(x0) := minimize
Π∈P

C(x0,Π) := Ex0

[∫ T

0
e−αtct(Xt, πt)dt + e−αTcT(XT)

]
(DCP)

Further, let Cτ(x,Π) (Resp. Lτ(x)) be the objective (Resp. optimal objec-
tive) for (DCP) when the integral is started from time t = τwith Xt = x,
rather than t = 0 with X0 = x.

Def 76 (Hamilton-Jacobi-Bellman Equation). For a Diffusion Con-
trol Problem (DCP), the equation

0 = min
a∈A

{
ct(x, a) + ∂tLt(x) + µt(x, a) · ∂xLt(x) +

1
2

[σTσ] · ∂xxLt(x) − αLt(x).
}

(HJB)
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is called the Hamilton-Jacobi-Bellman equation.1 It is the continuous
time analogue of the Bellman equation [2].

Heuristic Derivation of the HJB equation

We heuristically develop a Bellman equation for stochastic differ-
ential equations using our knowledge of the Bellman equation for
Markov decision processes, in Section 1.3 (Theorem 21) and our
heuristic derivation of the stochastic integral in Section A.2. This
is analogous to continuous time control in Section 2.1.

Perhaps the main thing to remember is that (informally) the HJB
equation is

0 = min
actions

{"instantaneous cost" + "Drift term from Ito’s Formula"} .

Here Ito’s formula is applied to the optimal value function at time
t, Lt(x). This is much easier to remember (assuming you know Ito’s
formula).

We suppose (for simplicity) that Xt belongs to R and is driven by
a one-dimensional Brownian motion. The plant equation in Def 74
is approximated by

Xt+δ − Xt = µt(Xt, πt)δ + σt(Xt, πt)(BT+δ − Bt)

for small δ (recall (2.5)). Similarly the cost function in (DCP) can be
approximated by

Ct(x,Π) ≈ E
[ ∑

t∈{0,δ,...,T−δ}

(1 − αδ)
t
δ ct(Xt, πt)δ + (1 − αδ)

T
δ cT(XT)

]
.

This follows from the definition of a Riemann Integral and since
(1 − αδ)

t
δ → e−αt. The Bellman equation for this objective function

and plant equation is satisfies

Lt(x) = min
a∈A

{
ct(x, a)δ + (1 − αδ)Ex,a [Lt+δ(Xt+δ)]

}
.

or, equivalently,

0 = min
a∈A

{
ct(x, a) +

1
δ
Ex,a [Lt+δ(Xt+δ) − Lt(x)] − αEx,a [Lt+δ(Xt+δ)]

}
.

1Here [σTσ] · ∂xxLt(x) is the dot-product of the Hessian matrix ∂xxLt(x) with σTσ.
I.e. we multiply component-wise and sum up terms.
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Now by Ito’s formula Lt(Xt) can be approximated by

Lt+δ(Xt+δ) − Lt(Xt)

≈

[
∂tL + µt(Xt, πt) · ∂xL +

σt(Xt, πt)2

2
∂xxL

]
δ + ∂xL · σt(Xt, πt) · (Bt+δ − Bt)

Thus

1
δ
Ex,a [Lt+δ(Xt+δ) − Lt(x)] = ∂tL + µt(Xt, πt) · ∂xL +

σt(Xt, πt)2

2
∂xxL

Substituting in this into the above Bellman equation and letting
δ→ 0, we get, as required,

0 = min
a∈A

{
ct(x, a) + ∂tL + µt(x, a) · ∂xL +

σt(x, a)2

2
∂xxL − αLt(x)

}
.

The following gives a rigorous proof that the HJB equation is the
right object to consider for a diffusion control problem.

Thrm 77 (Davis-Varaiya Martingale Prinicple of Optimality). Sup-
pose that there exists a function Lt(x) with LT(x) = e−αTcT(x) and such
that for any policy Π with states Xt

Mt = Lt(Xt) +

∫ t

0
e−ατcτ(Xτ,Π)dτ

is a sub-martingale and, moreover that for some policy Π∗, Mt is a
martingale then Π∗ is optimal and

L0(X0) = min
Π∈P
E

[∫ T

0
e−ατcτ(Xτ, πτ)dτ + cT(XT)

]
.

Proof. Since Mt is a sub-martingale for all Π, we have

L0(X0) = M0 ≤ E[MT] = EX0

[ ∫ T

0
e−αscτ(Xτ,Πτ)dτ + LT(XT)︸ ︷︷ ︸

CT(XT)

]
︸                                        ︷︷                                        ︸

C(x0,Π)

Therefore L0(X0) ≤ C(X0,Π) for all policies Π.
If Mt is a Martingale for policy Π∗, then by the same argument

L0(X0) = C(X0,Π∗). Thus

C(X0,Π
∗) = L0(X0) ≤ C(X0,Π)
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for all policies Π and so Π∗ is optimal, and it holds that

L0(X0) = min
Π∈P
E

[∫ T

0
e−ατcτ(Xτ, πτ)dτ + cT(XT)

]
.

�
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2.4 Merton Portfolio Optimization

• HJB equation for Merton Problem; CRRA utility solution; Proof
of Optimality.

• Multiple Assets; Dual Value function Approach.

We consider a specific diffusion control problem. We focus on set-
ting where there is one risky asset and one riskless asset, though
we will see that much of the analysis passes over to multiple assets.

Def 78 (The Merton Problem – Plant Equation). In the Merton prob-
lem you wish to optimise your long run consumption. You may invest
your wealth in a bank account receiving riskless interest r, or in a
risky asset with value St obeying the following SDE

dSt = St
{
σdBt + µdt

}
where each B = (Bt : t ≥ 0) is an independent standard Brownian
motion.

Wealth (Wt : t ≥ 0) obeys the SDE

dWt = r (Wt − ntSt)︸       ︷︷       ︸
Wealth in

bank

dt + ntdSt︸︷︷︸
Wealth in
asset

− ctdt︸︷︷︸
consumption

(2.6a)

= r (Wt − nt · St) dt + nt · dSt − ctdt (2.6b)

You can control ct your rate of consumption at time t and nt the number
of stocks the risky asset at time t. Also, we define θt = ntSt to be the
wealth in the risky asset at time t.

Def 79 (The Merton Problem – Objective). Given the above plant
equation, (2.6), the objective is to maximize the long-term utility of
consumption

V(w0) = max
(nt,ct)t≥0∈P(w0)

E

[∫
∞

0
e−ρtu(ct)dt

]
.

Here ρ is a positive constant and u(c) is a concave increasing utility
function. The set P(w0) is the set of policies given initial wealth w0.
Further, let V(w, t) be the optimal objective with the integral starting
for time t with wt = w.
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Prop 80. The HJB equation for the Merton Problem can be written as

0 = max
c
{u(c) − c∂wV} + max

θ

{
θ(µ − r)∂wV +

1
2
σ2θ2∂wwV

}
− ρV + rw∂wV

Here the optimal θ and c are given by

θ∗ = −
∂wV
∂wwV

σ−2(µ − r), c∗ = (u′)−1(∂wV)

Proof. First we note that we can rewrite the SDE for Wt as follows:

dWt = r (Wt − nt · St) dt + nt · dSt︸ ︷︷ ︸
=ntStµdt+ntStσdBt

−ctdt

=
(
rWt + (µ − r)θt − ct

)
dt + θtσdBt .

Recall that informally the HJB equation is

0 = max
actions

{
"instantaneous cost" − ρV + "Drift term from Ito’s Formula"

}
.

Notice that if we apply Ito’s formula to V(Wt) we get that

dV(Wt) = ∂wV(Wt)dWt +
1
2
∂wwV(Wt)d[W]t

= ∂wV(Wt) [r (Wt − nt · St) dt + nt · dSt − ctdt]

+ ∂tV(Wt)dt +
θ2σ2

2
∂wwV(Wt)dt

Applying this to the above term gives as required

0 = max
θ,c

{
u(c) − ρV +

(
rw + θ · (µ − r) − c

)
∂wV +

1
2
σ2θ2∂wwV

}
= max

c
{u(c) − c∂wV} + max

θ

{
θ(µ − r) +

1
2
σ2θ2∂wwV

}
− ρV + rw∂wV

Differentiating the HJB equation w.r.t. θ gives

σ2θ∂wwV = −(µ − r)∂wV.

Now rearrange for θ∗. The final part is a straight-forward calculation
on supc {u(c) − c∂wV}. �
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Merton for CRRA Utility
We focus on the case of CRRA utility, that is:

u(c) =
c1−R

1 − R

for R > 0.

V(w0) = max
(nt,ct)t≥0

E

[∫
∞

0
e−ρt c1−R

t

1 − R
dt

]
.

Prop 81. For a CRRA utility it holds that:
a) The Value function takes the form

V(w) = γ
w1−R

1 − R

for some position constant γ > 0.
b) The HJB equation is optimized by

θ∗ =
w
R
σ−2(µ − r),

c∗ = γ−
1
R w and sup

c
{u(c) − c∂wV} =

R
1 − R

γ1− 1
R w1−R .

c) The HJB equation is satisfied by parameters

γ∗ = R−1

{
ρ + (R − 1)

(
r +

1
2
κ2

R

)}
where

κ = σ−1(µ − r) .

Proof. a) Note that having a policy for initial wealth λw0 is the same
as having a policy of wealth w0 and then multiplying each amount
invested by λ:

V(λw) = max
(nt,ct)t≥0∈P(λw0)

E

[∫
∞

0
e−ρt c1−R

t

1 − R
dt

]
= max

(nt,ct)t≥0∈P(w0)
E

[∫
∞

0
e−ρt (λct)1−R

1 − R
dt

]
= λ1−RV(w).

Letting λ = w−1 and γ = (1 − R)V(1) gives the result.
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b) By part a), ∂wV(w) = γw−R and ∂wwV(w) = −Rγw−xR−1. So, by Prop
80,

θ∗ = −
∂wV
∂wwV

σ−2(µ − r) =
w
R
σ−2(µ − r)

Also,

sup
c
{u(c) − c∂wV} =⇒ u′(c) = ∂wV = γw−R

which since u′(c) = c−R, gives that c∗ = γ−
1
R w. Further,

sup
c
{u(c) − c∂wV} =

c∗1−R

1 − R
− c∗∂wV(c∗)

=
(γ−

1
R w)1−R

1 − R
− (γ−

1
R w)γw−R

=
R

1 − R
γ1− 1

R w1−R ,

as required.
c) Applying a) and b) to the HJB equation in Prop 80 gives

0 =
R

1 − R
γ1− 1

R w1−R
−

1
2
σ−2(µ − r)2 (∂wV)2

∂wwV
− ρV + rw∂wV

=
R

1 − R
γ1− 1

R w1−R
−

1
2
σ2(µ − r)2 (γw−r)2

(−Rγw−R−1)
− ργ

w1−R

1 − R

= γw1−R

[
R

1 − R
γ

1
R +

1
2
σ2 (µ − r)2

R
−

ρ

1 − R
+ r

]
.

Cancelling γw1−R and rearranging gives the required for for γ. �

To summarize: we notice we have shown that the parameters

θ∗ =
w
R
σ−2(µ − r) , c∗ = γ−

1
R w , (2.7a)

γ∗ = R−1

{
ρ + (R − 1)

(
r +

1
2
κ2

R

)}
, κ = σ−1(µ − r) . (2.7b)

give a solution to the HJB equation for the Merton problem. (Al-
though we have not yet proven them to be optimal.) Further note
that the weath under these parameters obeys the SDE

dWt = Wt

{
R−1κdWt + (r + R−1)|κ|2 − γ)dt

}
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which is a geometric Brownian motion:

Wt = W0 exp
{
R−1κWt + (r +

1
R2κ

2(2R1) − γ)t
}

We now give rigorous argument for the optimality of parameters
c∗, θ∗ and γ∗ for the Merton problem with CRRA utility. (This section
can be skipped if preferred.)

Thrm 82. The parameters in (2.7), above, are optimal for the Merton
problem.

Proof. Since u(y) is concave, u(y) ≤ u(x) + (y − x)u′(x). Thus for ζt =

e−ρtu′(c∗t) ∝ e−κBt−(r+ 1
2 |κ|

2)t we have that

E

[∫
∞

0
e−ρtu(ct)dt

]
≤ E

[∫
∞

0
e−ρt {u(c∗t) + (ct − c∗t)u

′(c∗t)
}

dt
]

= E

[∫
∞

0
e−ρtu(c∗t)dt

]
+ E

[∫
∞

0

(
ct − c∗t

)
ζtdt

]
(2.8)

Next we show that

Yt = ζtWt +

∫ t

0
ζscsds

is a positive local martingale. It is clear that the function Yt is pos-
itive. Note that

ζt = e−ρtu′(c∗t) = De−κBt−(r+ κ2
2 )t where γw0.

Define function

ft(W,B) = W exp
{
−κB −

(
r +

κ2

2
t
)}

and note that ζtWt = D ft(Wt,Bt). Now lets apply Ito’s formula to
ft(Wt,Bt). By Ito’s formula:

d f = ∂t f dt + ∂w f dWt + ∂B f dBt +
1
2
∂BB f d[B]t + ∂Bw f d[BW]t +

1
2
∂ww f d[W]t.

Now lets check terms.

∂t f = −
(
r +

1
2
κ2

)
We−κBt−(r+ 1

2κ
2)t ∂B f = −κWe−κBt−(r+ 1

2κ
2)t ∂w f = e−κBt−(r+ 1

2κ
2)t

∂BB f = κ2We−κBt−(r+ 1
2κ

2)t ∂wB f = −κe−κBt−(r+ 1
2κ

2)t ∂ww f = 0
d[B]t = dt d[W,B]t = θσdt
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Substituting these into Ito’s formula above gives,

d f = e−κBt−(r+ 1
2κ

2)t

[
−W

(
r +

1
2
κ2

)
dt +

{
rW − ct + θ(µ − r)

}
dt

+ θσdBt −WκdBt +
W
2
κ2dt − θσκdt

]
Cancelling (using that κσ = (µ − r)) and rearrganging we get

d f + e−κBt−(r+ κ2
2 )tctdt = e−κBt−(r+ 1

2κ
2)t [θσ −Wκ] dBt

So

ζtWt +

∫ t

0
ζscsds = D ft(Wt,BT) +

∫ t

0
DcteκBt−(r+ κ2

2 )tdt

is a local-Martingale. Recall from stochastic integration theory that
every positive local martingale is a supermartingale.

Doob’s Martingale Convergence Theorem applied to Yt gives

ζ0w0 = Y0 ≥ EY∞ = E

[∫
∞

0
ζscsds

]
Since ζt = e−ρtu′(c∗t) = e−ρt(c∗t)

−R and by the definition of V(w0):

Ew0

[∫
∞

0
ζsc∗sds

]
= Ew0

[∫
∞

0
e−ρt(c∗t)

1−Rds
]

= (1 − R)V(w0)=γw1−R
0 = ζ0w0

The last equality holds since ζ0 = (c∗0)−R and c∗s = γ1/RW∗

s.
Combining the last equality and the inequality before that, we

see that
E

[∫
∞

0

(
ct − c∗t

)
ζtdt

]
≤ 0 .

Applying this to (2.8) we see that

E

[∫
∞

0
e−ρtu(ct)dt

]
≤ E

[∫
∞

0
e−ρtu(c∗t)dt

]
and, as required, c∗t is optimal. �
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Merton Portfolio Optimization with Multiple Assets
We now note how the above results extend to the case where there
aren’t many assets. Now suppose that there are d assets that can
be in invested in. These obey the Stochastic Differential Equation

dSi
t = Si

t

 N∑
j=1

σi jdB j
t + µidt

 , i = 1, ..., d

where B j
t is an independent Brownian motion for each j = 1, ...,N.

Wealth now evolves according the SDE

dWt = r (Wt − nt · St) dt + nt · dSt − ctdt

where nt = (ni
t : i = 1, ..., d) gives the amount of each asset St = (Si

t :
i = 1, ..., d) held in the portfolio at time t. Also we define θt = (ni

tS
i
t : i =

1, ..., d) as the wealth in each asset. As given in Def 79, our task is
the maximize the objective

V(w) = max
(nt,ct)t≥0∈P(w0)

E

[∫
∞

0
e−ρtu(ct)dt

]
.

We now proceed through exercises that are very similar to the case
with a single risky asset. We go through the proofs somewhat
quickly.

Lemma 4. Show that the HJB equation for the Merton Problem can
be written as

0 = max
c
{u(c) − c∂wV} + max

θ

{
θ · (µ − r)∂wV +

1
2
|σθ|2∂wwV

}
− ρV + rw∂wV.

where r = (r : i = 1, ..., d).

Proof. The proof follows more-or-less identically to Prop 80. Note
that in this case Ito’s formula applied to V(Wt) gives

dV(Wt) = ∂wV(Wt)dWt +
1
2
∂wwV(Wt)d[W]t

where

dWt =
(
rWt − rnt · St︸ ︷︷ ︸

θ·r

)
dt + nt · dSt︸  ︷︷  ︸

θ>[σdBt+µdt]

−ctdt = (rWt + θt(µ − r) − ct) dt + θ>t σdBt

d[W]t =
∑

i j

(θ>t σ)i(θ>t σ) jd[Bi
t,B

j
t] = |θtσ|

2dt.
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Thus

dV(Wt) =
[
(rWt + θt(µ − r) − ct) ∂wV(Wt) +

1
2
|θσ|2∂wwV(Wt)

]
dt + θ>t σdBt.

This is the drift term applied in the HJB equation. Thus recalling
that

0 = max
actions

{"instantaneous cost" + "Drift term from Ito’s Formula"} .

This gives the require HJB equation. �

Lemma 5. Show the optimal asset portfolio in the HJB equation is
given by

θ∗ = −
∂wV
∂wwV

(σσ>)−1(µ − r)

and

max
θ

{
θ · (µ − r)∂wV +

1
2

(θ>σ>σθ)∂wwV
}

= −
1
2
|κ|2

(∂wV)2

∂wwV

Proof. Considering Lemma 4 we have that

max
θ

{
θ · (µ − r)∂wV +

1
2

(θ>σ>σθ)∂wwV
}

=⇒ (µ−r)∂wV+∂wwV(σ>σ)θ∗ = 0.

Solving for θ∗ and substituting back into the maximization gives the
answer. �

Lemma 6. Show that for a CRRA utility the optimal solution to the
HJB equation is given by

θ∗ =
w
R

(σσ>)−1(µ − r) , c∗ = γ−
1
R w

where

γ−
1
R = R−1

{
ρ + (R − 1)(r +

1
2
|κ|2

R
)
}

κ = σ−1(µ − r).

Proof. 6 (In this proof when we refer to Prop 81 we mean that the
argument which was applied in the single-asset setting is identical
in the multiple asset setting.)

By Prop 81a)

V(w) = γ
w1−R

1 − R
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for some constant γ. Differentiating twice gives

θ∗ = −
∂wV
∂wwV

(σσ>)−1(µ − r) =
w
R

(σσ>)−1(µ − r).

By Prop 81b), c∗ = γ−
1
R w. Substituting these solutions into the HJB

equation gives

0 = max
c
{u(c) − c∂wV} + max

θ

{
θ · (µ − r)∂wV +

1
2
|σθ|2∂wwV

}
− ρV + rw∂wV

=
R

1 − R
γ1− 1

R w1−R +
1
2
|κ|2 ·

γ

R
w1−R

− ργ
w1−R

1 − R
+ rγw1−R

Rearranging and solving for γ gives the required solution for γ∗. �

Def 83 (Merton Portfolio and Market Price Risk Vector). As given
above,

θ∗ =
w
R

(σσ>)−1(µ − r) ,

is called the Merton Portfolio and

κ = σ−1(µ − r).

is called the Market Price Risk Vector.

Dual value function approach
We could solve the CRRA utility case because it had a special struc-
ture. We now give a method for solving for general utilities u(t, c).

Here we assume that u(t, c) is continuous in t and c, concave in c
and satisfies

lim
c→∞

u′(t, c) = 0

The HJB equation for the Merton problem is

0 = max
θ,c

{
u(t, c) + ∂tV +

(
rw + θ · (µ − r) − c

)
∂wV +

1
2
|σTθ|2∂wwV

}
.

We take the LF transform of u,

u∗(t, z) = max
c
{u(t, c) − zc}

Further we define
J(t, z) = V(t,w) − wz

where w is such that z = ∂wV(t,w).
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Thrm 84. The HJB equation can be written as

0 = u∗(t, c) + ∂tJ − rz∂zJ +
1
2
|κ|2z2∂zzJ

Moreover if we suppose that u(t, x) = e−ρtu(x), for u(x) concave and
increasing, the HJB equation becomes

0 = u∗(y) − ρ j(y) + (ρ − r)yj′(y) +
1
2
|κ|2y2 j′′(y)

Noticed in the first HJB equation above that we have got rid of
the maximization and in the second we have a linear ODE, which
can be solved using standard methods.

Proof. First we will show that

∂zJ = −w, ∂zzJ = −
1

∂wwV
, ∂tJ = ∂tV (2.9)

We can ignore the dependence of t for the first two expressions i.e.
take J(t, z) = J(z). Now J(z) = V((V′)−1(z)) − z(V′)−1(z), so

J′(z) =
d
dz

(V′)−1(z) ·V′((V′)−1(z))︸         ︷︷         ︸
=z

−z
d
dz

(V′)−1(z)− (V′)−1(z) = −(V′)−1(z) = −w

and
J′′(z) = −

d
dz

(V′)−1(z) = −
1

V′′((V′)−1(z))
= −

1
V′′(w)

.

Now reintroducing dependence on t,

∂J
∂t

= ∂tV(t,w) +
dw
dt

∂wV︸︷︷︸
=z

−
dw
dt

z = ∂tV

This gives the required derivatives in (2.9).
Substituting the expressions in (2.9), the HJB equation is

0 = max
c
{u(t, z) − c∂wV} + max

θ

{
θ · (µ − r)∂wV +

1
2
|σθ|2∂wwV

}
+ ∂tV + rw∂wV

= u∗(t, ∂wV) −
1
2
|κ|2

(∂wV)2

∂wwV
+ ∂tV + rw∂wV

= u∗(t, z) +
1
2
|κ|2z2∂zzJ + ∂tJ − rz∂zJ .
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Now is we suppose that u(t, x) = e−ρtu(x), for u(x) concave and
increasing, then by the same argument as Prop 81a) we have that

V(t,w) = e−ρtV(w) .

Defining j(z) = V(w) − wz where w is such that z = ∂wV(t,w), the
following are straightforward calculations:

J(t, z) = e−ρt j(y), ∂tJ = −ρe−ρt j(y) + ρe−ρtyj′(y)
∂zJ = j′(y), ∂zzJ = eρt j′′(y)

where y = zeρt. Now substituting these terms into the HJB equation
gives the result:

0 = u∗(t, z)︸ ︷︷ ︸
=e−ρtu∗(y)

+ ∂tJ︸︷︷︸
=−ρe−ρt j(y)+ρe−ρt yj′(y)

− rz∂zJ︸︷︷︸
re−ρt yj′(y)

+
1
2
|κ|2z2∂zzJ︸      ︷︷      ︸

1
2 |κ|

2 y2e−ρt j′′(y)

.

�
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Exercises
Ex 85. We consider the standard Merton investment problem. We
assume that utility is derived from both consumption and wealth ac-
cording to the function

u(c,w) =
wαcβ

1 − R
for α and β positive constants such that 1 − R = α + β. Show that the
solution to the HJB equation is of the form

V(w) = A
w1−R

1 − R

and write down the HJB equation for this problem and use it to find
the constant A.

Ex 86. We consider the standard Merton investment problem. We
assume that utility has the form

u(c) = −
1
R

e−Rc.

for R > 0. Argue that the HJB equation (as a function of wealth and
time) has a solution of the form

V(t,w) = −Ae−ρte−rRw

for some positive constant A and that for this there is constant amount
of wealth kept in the risky asset.

Ex 87. We consider the Merton investment problem but now the in-
terest rate can vary. Wealth (Wt : t ≥ 0) satisfies W0 = w and obeys
the stochastic differential equation

dWt = {rtWt + (µ − rt)θt − ct}dt + θtσdBt.

and the interest rate obeys the stochastic differential equation

drt = β(r̄ − rt)dt + σrdBr
t

where β, r̄ and σr are fixed parameters and Br
t is a standard Brownian

motion with covariation [Br
t ,Bt] = ηt .

We maximize the utility of a CRRA utility function:

V(w, r) = max
(θs,cs)s≥0

E

[∫
∞

0
e−ρsu(cs)ds

∣∣∣∣∣∣W0 = w, r0 = r
]
, with u(cs) =

c1−R
s

1 − R
.
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Show that,

V(w, r) = γ(r)
w1−R

1 − R
for some function γ(r), and analyse the HJB equation to find the dif-
ferential equation that the function γ(r) must satisfy.
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Stochastic Approximation
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3.1 Robbins-Munro.

• Robbins Munro step rule.

• Robbins-Siegmund Theorem.

• Stochastic Gradient Descent.

• Asynchronous Implementation.

We review a method for finding fixed points then extend it to slightly
more general, modern proofs.

Often it is important to find a solution to the equation

0 = g(x∗)

by evaluating g at a sequence of points. For instance Newton’s
method would perform the updates xn+1 = xn − g(xn)/g′(xn). However,
Robbins and Munro consider the setting where we cannot directly
observe g but we might observe some random variable whose mean
is g(x). Thus we observe

yn = g(xn) + εn (3.1)

where εn is a random variable with mean zero and hope solve for
g(x) = 0. Notice in this setting, even if we can find g′(x), Newton’s
method may not converge. The key idea of Robbins and Munro is
to use a schema where

xn+1 = xn − αnyn (RM)

where we chose the sequence {αn}
∞

n=0 so that∑
n

αn = ∞,
∑

n

α2
n < ∞ .

Before proceeding here are a few different use cases:

• Quartiles. We want to find x such that P(X ≤ x) = p for some
fixed p. But we can only sample the random variable X.

• Regression. We preform regression g(x) = β0 + β1x, but rather
than estimate β we want to know where g(x) = 0.
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• Optimization. We want to optimize a convex function f (x)
whose gradient is g(x). Assume that f (x) =

∑K
k=1 fk(x) for some

large K. To find the optimum at g(x) = 0 we randomly sample
(uniformly) fk(x) whose gradient, gk(x), is an bias estimate of
g(x).

The following result contains the key elements of the Robbins-Munro
proof

Lem 88. Suppose that zn is a positive sequence such that

zn+1 ≤ zn(1 − an) + cn (3.2)

where an and cn are positive sequences such that∑
n

an = ∞, and
∑

n

cn < ∞ (3.3)

then limn→∞ zn = 0.

Proof. We can assume that equality holds, i.e., zn+1 = zn(1−an)+cn. We
can achieve this by increasing an or decreasing cn in the inequality
(3.2); neither of which effect the conditions on an and bn, (3.3).

Now for all n we have the following lower-bound

−z0 ≤ zn − z0 =

n−1∑
k=0

(zk+1 − zk) =

n−1∑
k=0

ck −

n−1∑
k=0

akzk

Since
∑

ck < ∞ it must be that
∑

akzk < ∞. Thus since both sums
converge it must be that limn zn converges. Finally since

∑
ak = ∞

and
∑

akzk < ∞ it must be that limn zn = 0. �

An Easy Robbin’s Munro Proof

The following lemma is a straight-forward proof based on the origi-
nal argument of Robbins and Munro. This proof is intentionally not
the most general but instead gives the key ideas.

We assume that supnE[yn] < ∞. The main assumption that we
make is that, for some κ > 0

(g(y) − g(x))>(y − x) ≥ κ||y − x||2 (3.4)

Here are a couple of instances where this holds:
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• g(x) is the gradient of a strongly convex function f (x).1

• g : [xmin, xmax] → [ymin, ymax] is differentiable real valued with
g(xmin) < 0, g(xmax) > 0 and there is a unique point x∗ such that
g(x∗) = 0 and g′(x∗) > 0.

The first item shows that Robbins-Munro plays nicely with convex
optimization problems. The second items shows however, that we
don’t need g to be the derivative of a convex function for the method
to work.

Thrm 89 (Robbins-Munro). If we chose xn acording to the Robbin-
Munro step rule (RM) and we assume (3.4) then we have that

E[(xn − x∗)2] −−−→
n→∞

0

where here x∗ satisfies g(x∗) = 0.

Proof. Let zn = E[(xn− x∗)2], en = E[y2
n] and dn = E[(xn− x∗)(g(xn)− g(x∗))].

Then we have

zn+1 = E(xn+1 − xn + xn − x∗)2

= E(xn+1 − xn)2 + 2E[(xn+1 − xn)(xn − x∗)] + E(xn − x∗)2

= α2
nE[y2

n] − 2αnE[g(xn)(xn − x∗)] + E(xn − x∗)2

= α2
nen − 2αndn + zn

Thus

dn = E[(xn − x∗)(g(xn) − g(x∗))] ≥ κE[(xn − x∗)(xn − x∗)] = κzn .

Thus
zn+1 ≤ zn(1 − 2anκ) + a2

nen.

Now applying Lemma 88 gives the result. �

Additional Lemmas

The following Lemma is also sometimes applied to get tighter bounds
on convergence.

1Note, if g(x) = ∇ f (x) then (3.4) is the definition of f (x) begin strongly convex.
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Lem 90. Suppose that zn is a positive sequence such that

zn+1 ≤ zn(1 − an) + cn

Then

zn+1 ≤ z0

n∏
k=0

(1 − ak) +

n∑
j=0

c j

n∏
k= j+1

(1 − ak)

Proof. The proof follows by repeated substitution

zn+1 ≤ zn(1 − an) + cn ≤ (zn−1(1 − an−1) + cn−1)(1 − an) + cn

≤ zn−1(1 − an−1)(1 − an) + cn + cn−1(1 − an)
...

≤ z0

n∏
k=0

(1 − ak) +

n∑
j=0

c j

n∏
k= j+1

(1 − ak)

�

The following proposition is a Martingale version of the above result.

Prop 91 (Robbins-Siegmund Theorem). If

E[Zn+1|Fn] ≤ (1 − an + bn)Zn + cn (3.5)

for positive adaptive RVs Zn, an, bn, cn such that with probability 1,∑
n

an = ∞,
∑

n

bn < ∞, and
∑

n

cn < ∞

then limn→∞ zn = 0.

Proof. The results is somemanipulations analogous to the Robbins-
Munro proof and a bunch of nice reductions to Doob’s Martingale
Convergence Theorem.

First note the result is equivalent to proving the result with bn = 0
for all n. If we divide both sides of (3.5) by

∏n
m=0(1 − bm) we get

E[Z′n+1|Fn] ≤ (1 − a′n)Z′n + c′n ,

where a′n = an/(1 + bn), c′n = cn/
∏n

m=0(1 + bm) and Z′n = Zn/
∏n

m=0(1 + bm).
Notice since

∑
bn converges then so does

∏
(1 + bn). Thus a′n, c′n and

Z′n have the same convergence properties as those required for an, cn

and Zn. Thus, we now assume bn = 0 for all n.
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Now notice

Yn = Z′n +

n−1∑
k=0

a′kZ
′

k −

n−1∑
k=0

c′k

is a super-martingale. We want to use Doob’s Martingale conver-
gence theorem; however, we need to apply a localization argument
to apply this. Specifically, let τC = inf{n ≥ 0 :

∑n
k=1 c′k > C}. This is a

stopping time. Notice

Yn∧τC ≥ −

n∧τC−1∑
k=0

c′k ≥ −C.

So Yn∧τC is a super-martingale and below by −C. Thus by Doob’s
Martingale Convergnce Theorem, limn→∞ Yn∧τC exists for each C > 0,
and τC = ∞ for some C, since

∑
c′k < ∞. Thus limn→∞ Yn exists.

Now notice
n∑

k=1

c′k −
n∑

k=1

a′kZ
′

k = Z′n+1 − Yn+1 ≤ −Yn+1.

So like in the last proposition, since lim Yn and
∑

c′k exists, we see
that

∑
∞

k=1 a′kZ
′

k converges. And thus Z′n+1 converges.
Finally since we assume

∑
k a′k = ∞ and we know that

∑
∞

k=1 a′kZ
′

k < ∞
it must be that Z′k converges to zero. �
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Stochastic Approximation Examples.

Ex 92. Consider the Stochastic Differential Equation

dθt = −αtg(θt)dt + αtdBt .

Suppose that for some unique θ∗ that (θ∗ − θ)g(θ) ≤ −||θ − θ∗||2/2. Use
Ito’s formula to argue that zt = E||θt − θ∗||2/2 obeys the differential
equation

dzt

dt
≤ −αtzt +

1
2
α2

t

Then show that

zt − z1 ≤ e−
∫ t

0 αsds +

∫ t

0

1
2
α2

s e−
∫ t

s αududs.

We analyzing the 2nd term in this expression. Suppose that αs = 1
sγ ,

using Integration by parts or otherwise, show that∫ t

1

1
2
α2

s e−
∫ t

s αududs ≤
1
tα

+
2
t
− 2e−

∫ t
1 s−γds .

Rmk 93. A quick remark before proceeding with the solution. Note
that the above SDE behaves very similarly to the Robbins-Munro step
rule. Notice that θt behaves like the following process

θt − θ0 = G
(∫ t

0
αsds

)
+ B

(∫ t

0
α2

s ds
)

where here G(t) is a solution to the differential equation θ̇t = −g(θt)
and B(t) is a standard Brownian motion. If we take αs = 1/sγ for
γ ∈ (0, 1] then integral in the Brownian term is finite, so the random
part of the process eventually converges. While the integral in the G
function goes to infinity, so we observe the entire sample path of G(t)
is explored. So we expect to converge to the stationary behaviour of
the ODE θ̇ = −g(θ). This point is quite informal. Basically the work of
Kushner and Yin [CITE] argues this point in a somewhat more formal
sense.
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References
Robbin-Monro introduce the procedure was (unsurprisingly) intro-
duced by Robbins and Monro [33] (A very readable paper). Stochas-
tic approximation has grown enormously, see Krushner and Yin [24]
for an excellent text on the topic. The discussion on finite time error
is based on Bach and Moulines [1]. Asynchronous update section
is based on reading Tsitsiklis [40] (and Bertsekas & Tsitsiklis [6]),
here we apply a Robbins & Siegmund [34].

3.2 Stochastic Gradient Decent
Suppose that we have some function F : Rp

→ R

F(θ) = EX[ f (X;θ)]

that we wish to minimize. We suppose that the function f (X;θ)
is known and so is its gradient g(θ; X), where E[g(θ; X)] = G(θ) is
the gradient of F(θ). The difficulty is that we do not have direct
access to the distribution of X, but we can draw random samples
X1,X2, . . . . We can use the Robbins-Munro Schema to optimize F(θ).
Specifically we take

θn+1 = θn − αngn(θn) (SGD)
= θn − αnG(θn) + αnεn

where gn(θ) = g(θ; Xn) and εn = G(θ) − gn(θ) . The above sequence
is often referred to as Stochastic Gradient Descent. We chose the
sequence {αn}

∞

n=0 so that∑
n

αn = ∞,
∑

n

α2
n < ∞ .

(Note here we may assume that αn is a function of previous param-
eters and observations θ1, ..., θn−1 and X1, ...,Xn−1.) We let || · ||2 be the
Euclidean norm. We can prove that convergence θn to the minimizer
of F(θ).

Thrm 94 (Stochastic Gradient Descent). Suppose that θn, G(·), and
εn in Stochastic Gradient Descent (SGD) satisfy the following condi-
tions

1. ∃θ∗ such that ∀θ, G(θ) · (θ − θ∗) ≥ µ||θ − θ∗||22
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2. ||G(θn)||22 ≤ A + B||θn||
2
2

3. E[||εn||
2
2|Fn] ≤ K

Then limn θn = θ∗ where θ∗ = argminθ F(θ) and assuming αn are deter-
ministic then limE[||θn − θ∗||22] = 0

Let’s quickly review the conditions above. First consider Condi-
tion 1. Note condition 1 implies moving in the direction of θ∗ always
decreases the F(θ), so θ∗ minimizes F. The statement (G(θ) − G(φ)) ·
(θ−φ) ≥ µ||θ−φ||2 is equivalent to F(θ) being strongly convex. So this
is enough to give Condition 1. Condition 2 can be interpreted as a
gradient condition, or that the steps θn do not grow unboundedly.
Condition 3 is natural given our analysis so far.

Proof.

||θn+1 − θ
∗
||

2
2 − ||θn − θ

∗
||

2
2

= − αnG(θn) · (θn − θ
∗) − αnεn · (θn − αnG(θn) − θ∗) + α2

n||εn||
2
2 + α2

n||G(θn)||22

Taking expecations with respect to E[|Fn] we get

E[||θn+1 − θ
∗
||

2
2 − ||θn − θ

∗
||

2
2|Fn]

= − αnG(θn) · (θn − θ
∗) + α2

nE[||εn||
2
2|Fn] + α2

n||G(θn)||22
≤ − αnµ||θn − θ

∗
||

2
2 + α2

nK + α2
n(A + B||θn − θ

∗
||

2
2)

Thus, rearranging

E[||θn+1 − θ
∗
||

2
2|Fn] ≤ (1 − αnµ + α2

nB)||θn − θ
∗
||

2
2 + α2

n(K + A)

Thus by Proposition 91, θn+1 → θ∗. Further taking expectations on
both sides above we have

E[||θn+1 − θ
∗
||

2
2] ≤ (1 − αnµ + α2

nB)E[||θn − θ
∗
||

2
2] + α2

n(K + A)

We can apply Lemma 88 (note that an = αnµ + α2
nB will be positive

for suitably large n), to give that E||θn+1 − θ∗||22] → 0 as n → ∞ as
required. �

Finally we remark that in the proof we analyzed ||θn − θ∗||2 but
equally we could have analyzed F(θn) − F(θ∗) instead.
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Finite Time Error Bounds for Stochastic Gradient Descent

Above we established convergence of Stochastic Gradient Descent.
However, once we know it works we might want to know how well
it works. Considering the same set up as above, we establish some
finite time bounds on the error of stochastic gradient descent.

This involves a more exact analysis of the inequality

E[||θn+1 − θ
∗
||

2
2] ≤(1 − αnµ + α2

nB)E[||θn − θ
∗
||

2
2] + α2

nC (3.6)

that we found in our proof of Theorem 94. (Here C = K + A.)

Thrm 95. There exist positive constants a1, a2,M1 and M2

E[||θn+1 − θ
∗
||

2
2] ≤

4C
µ

1
nγ

+ E[||θ0 − θ
∗
||

2
2]M1e−a1n1−γ

+ n1−2αM2e−a2n1−γ
. (3.7)

Proof. Letting zn = E[||θn − θ∗||22]. Applying Lemma 88 gives that

zn+1 ≤ z0

n∏
k=0

(1 − αkµ + α2
kB)︸                 ︷︷                 ︸

=:Fn

+

n∑
m=0

Cα2
m

n∏
j=m+1

(1 − αkµ + α2
kB)

︸                               ︷︷                               ︸
=:Gn

We now bound Fn and Gn. First, Fn, assuming µ
2 ≥ αkB we get

Fn ≤ exp

−µ2 ∑
k

αk


For Gn we split the sum down the middle and bound the two parts:

Gn =

n∑
m=n/2

Cα2
m

n∏
j=m+1

(1 − αkµ + α2
kB) +

n/2∑
m=0

Cα2
m

n∏
j=m+1

(1 − αkµ + α2
kB)

≤
2C
µ
αn/2

n∑
m=n/2

αkµ

2

n∏
j=m+1

(
1 −

αkµ

2

)
︸                  ︷︷                  ︸

=
∏n

j=m+1(1−
αkµ

2 )−
∏n

j=m(1−
αkµ

2 )

+

 n∑
m=0

Cα2
m

 n∏
j=n/2

(1 −
αkµ

2
)

≤
2C
µ
αn/2

1 − n∏
j=n/2

(
1 −

αkµ

2

) +

 n∑
m=0

Cα2
m

 exp

−µ2
n∑

k=n/2

αk

 .
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Putting our bounds on Fn and Gn together then gives

zn+1 ≤
2C
µ
αn/2 + z0 exp

−µ2 ∑
k

αk

 +

 n∑
m=0

Cα2
m

 exp

−µ2
n∑

j=n/2

αk


Letting αn = n−γ and noting

∑n
k=1 n−γ =

∫ n

1
x−γdx+M = (x1−γ

−1)/(1−γ)+M
for a constant M. We get that

zn+1 ≤
4C
µnγ

+ z0M1 exp
{
−
µn1−γ

2(1 − γ)

}
+ n1−2αM2 exp

−
µ(1 −

(
1
2

)1−γ
)

2(1 − γ)
n1−γ

 .
�

Rmk 96. Notice the order of magnitude achieved is correct (assuming
the original inequality in (3.6) is tight). To see this notice that the
product for Gn above behaves as the intergral to which we can apply
integration by parts:∫ n

1

1
x2α e−

∫ n
x

1
yα dydx =

∫ n

1

1
xα︸︷︷︸
u

1
xα

e−
∫ n

x
1

yα dy︸      ︷︷      ︸
dv

dx

=
[ 1
xα

e−
∫ n

x
1

yα dy
]n

1︸          ︷︷          ︸
1

nα −e−
∫ n
1 yαdy

+

∫ n

1

α

xα−1 e−
∫ n

x
1

yα dy
≥

1
nα

which suggests that the convergence rate of 1
nα found for this term is

of the correct order of magnitude.
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3.3 Lyapunov Functions
Lyapunov functions are an extremely convenient device for proving
that a dynamical system converges.

• For some continuous function f : Rn
→ Rn, we suppose x(t)

obeys the differential equation
dx
dt

= f (x(t)), t ∈ R+. (3.8)

• A Lyapunov function is a continuously differentiable function
L : Rn

→ R with unique minimum at x∗ such that

f (x) · ∇L(x) < 0, ∀x , x∗. (3.9)

• We add the additional assumption that {x : L(x) ≤ l} is a com-
pact set for every l ∈ R.

Theorem 1. If a Lyapunov exists (3.9) for differential equation (3.8)
then L(x(t))↘ L(x∗) as t→∞ and

x(t) −−−→
t→∞

x∗.

Proof. Firstly,
dL(x(t))

dt
= f (x(t)) · ∇L(x(t)) < 0.

So L(x(t)) is decreasing. Suppose it decreases to L̃. By the Funda-
mental Theorem of Calculus

L̃ − L(x(t)) =

∫
∞

t

dL(x(s))
ds

ds −−−→
t→∞

0 (3.10)

Thus we can take a sequence of times {sk}
∞

k=1 such that dL(x(sk))
dt → 0 as

sk →∞. As {x : L(x) < L(x(0))} is compact, we can take a subsequence
of times {tk}

∞

k=1 ⊂ {sk}
∞

k=1, tk →∞ such that {x(tk)}∞k=0 converges. Suppose
it converges to x̃. By continuity,

0 = lim
k→∞

dL(x(tk))
dt

= lim
k→∞

f (x(tk)) · ∇L(x̃) = f (x̃) · ∇L(x̃).

Thus by definition x̃ = x∗. Thus limt→∞ L(x(t)) = L(x∗) and thus by
continuity of L at x∗ we must have x(t)→ x∗. �

• One can check this proof follows more-or-less unchanged if x∗,
the minimum of L, is not unique.
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La Salle’s Invariance Prinicple
We generalize and strengthen the Lyapunov convergence result in
Theorem Lya:ConvThrm. Here we no longer consider convergence
to a unique global minimum of L(x). Instead, we find convergence
to points

X
? =

{
x : g(x) · ∇L(x) = 0

}
The set X? is called the set of invariant points. Notice, under the
conditions of Theorem 1, X? = {x?}. In general, X? contains all local
[and global] minima of L(x). If the dynamics exclude invariant points
which are non-local minima [for instance by taking g(x) = −η∇L(x)]
then X? is exactly the set of local minima. The result which proves
convergence to invariant points is called Salle’s Invariance Prinicple.

We assume the following

• The process x(t), t ∈ R+ obeys the o.d.e.

dx
dt

= g(x(t))

for g : Rd
→ Rd a continuous function.

• x(0) ∈ X where X is a compact set such that if x(0) ∈ X then
x(t) ∈ X for all t.

• The Lyapunov function L : Rd
→ R+ is a continuously differen-

tiable function such that

g(x) · ∇L(x) ≤ 0, ∀x ∈ X

and we let
X
? = {x ∈ X : g(x) · ∇L(x) = 0}.

La Salle’s Invariance Prinicple is as follows2

Theorem 2 (La Salle’s Invariance Prinicple). As t → ∞, x(t) con-
vergences to X? uniformly over initial conditions x(0) ∈ X. That is:
∀x(0) ∈ X ∀ε > 0 ∃ T > 0 such that

min
x?∈X?

∣∣∣x(T) − x?
∣∣∣ < ε .

2The orginial result of La Salle proves pointwise convergence rather than uni-
form convergence, other than this the proof closely follows La Salle’s argument.

103



3.3. LYAPUNOV FUNCTIONS NSW

Proof. If x(0) belongs to a compact set then L(x(0)) ≤ l for some l ≥ 0.
For δ > 0, we let X?(δ) = {x ∈ X : −g(x) · ∇L(x) < δ}. Since dL/dt =
g(x) · ∇L(x) and L(x0) ≤ l, for time T > L/δ is must be that x(t) ∈ X?(δ)
for all t ≥ T. [This is the main part of the argument completed.]

It is reasonable to assume that x(t) ∈ X?(δ) for δ suitably small
then x(t) must be close to X?. This is true and to show this we
prove the following claim: for ε > 0 ∃δ > 0 such that if x(t) ∈ X?(δ)
then |x(T) − x?| < ε for some x? ∈ X?. The proof is a fairly standard
analysis argument: suppose the claim is not true, then there exists
a sequence xn such that −g(xn) · ∇L(xn) < 1/n and |xn − x?| ≥ ε for
all x? ∈ X?. Since X is compact xnk → x∞ over some subsequence
{nk}k∈N. By continuity g(x∞) · ∇L(x∞) = 0 and |x∞ − x?| ≥ ε for all x? ∈ X,
which is a contradiction since g(x∞) ·∇L(x∞) = 0 means x∞ ∈ X?. This
contradiction thus such thata there there exists a value n? such
that for all x such that −g(x) · ∇L(x) < δ := 1/n? implies minx? |x− x?| <
ε. �

Remark 97. We assume x(t) ∈ X for some compact set X. Notice a
natural condition that implies compactness is that

lim inf
|x|→∞

L(x) = ∞ .

Specifically this implies that Xl := {x : L(x) ≤ l} is compact and by
assumption that L(x) is decreasing, if x(0) ∈ Xl then x(t) ∈ Xl for all
t ∈ R+.
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Convex Lyapunov Functions
Next if we assume a bit more about L(x) we can ask more about the
rate of convergence. We assume that

• L(x) is convex, minx L(x) = 0

•
dx
dt = −γt∇L(x(t))

• ||xt|| ≤ D for some D

Note, before we proceed recall that L(x) is a convex function iff

∇L(x)(y − x) ≤ L(y) − L(x) ≤ ∇L(y)(y − x) .

Theorem 3. Given the assumptions itemized above,

L(x̄T) ≤
D

TγT

where x̄T = 1
T

∫ T

0
xtdt.

Proof. By Jensen’s inequality,

L(x̄T) ≤
1
T

∫ T

0
L(x(t))dt .

So we analyse the integral of L(x(t)).∫ T

0
L(x(t))dt =

∫ T

0
L(x(t)) − L(x?)dt ≤

∫ T

0
∇L(x(t))(x(t) − x?)dt

Notice that since dx
dt = −ηt∇L(x(t)) we have

−
1

2ηt

d
dt
||x(t) − x?||2 = ∇L(x(t))(x(t) − x?).

Substituting this into the integral above gives∫ T

0
L(x(t))dt ≤ −

∫ T

0

1
2ηt

d
dt
||x(t) − x?||2dt

= −

[
1

2ηt
||x(t) − x?||2

]T

0

+

∫ T

0

1
2
||x(t) − x?||2

dη−1

dt
dt

≤
D

2ηT
+

D
2ηT

=
D
ηT
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Finally, applying this to our Jensen bound on L(x̄T) gives

L(x̄T) ≤
D

TηT
.

�
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Contractions.
For Markov decision processes working with contractions is impor-
tant since the Bellman operator is a contraction in the || · ||∞ norm.
Thus we give some Lyapunov convergence results in this case.

Recall that F : Rd
→ Rd is a contraction if, for β ∈ (0, 1) it holds

that
||F(x) − F(y)||p ≤ β||x − y||p

in this section we let

||x||p :=

 d∑
i=1

wi|xi|
p


1
p

for weights wi > 0 and p such that 1 ≤ p ≤ ∞.

Theorem 4. If we suppose that x(t) obeys the ODE

dx
dt

= F(x) − x

where F(x) is contraction with fixed point x? then L(x) = ||x − x||p is a
Lyapunov function and x(t)→ x∗.

Proof. We let sgn(x) be the sign function that is sgn(x) = +1 if x > 0,
sgn(x) = −1 if x < 0 and sgn(x) = 0 if x = 0. For now we assume
1 ≤ p < ∞ (shortly we will extend to allow p = ∞).

By the chain rule

dL
dt

=
∑

i

∂L
∂xi

dxi

dt

=

∑
j

w j|x j − x?|p


1−p
p

︸                  ︷︷                  ︸
||x−x?||1−p

p

∑
i

wisgn(xi − x?i )|xi − x?|1−p
(
Fi(x) − xi

)
︸      ︷︷      ︸

Fi(x)−Fi(x?)−(xi−x?i )

||x − x?||1−p
p

∑
i

wisgn(xi − x?i )|xi − x?i |
p−1

(
Fi(x) − Fi(x?)

)︸                                                     ︷︷                                                     ︸
≤||x−x?||p−1||F(x)−F(x?)||p

−||x − x?||p

≤ ||F(x) − F(x?)||p − ||x − x?||p
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Therefore integrating the above gives

||x(t) − x?||p − ||x(s) − x?||p ≤
∫ t

s
||F(x(u)) − F(x?)||p − ||x(u) − x?||pdu

Notice we can allow p = ∞ in the above expression since ||z||p → ||z||∞
uniformly on compacts. So applying the fact F is a contraction we
gain that

||x(t) − x?||p − ||x(s) − x?||p ≤ −(1 − β)
∫ t

s
||x(u) − x?||pdu

which ensures convergence of x(t) to x?. �
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Exponential Convergence
We now place some assumptions where we can make further com-
ments about rates of convergence.

Theorem 5. If we further assume that f and L satisfy the conditions

1. f (x) · ∇L(x) ≤ −γL(x) for some γ > 0.

2. ∃ α, η > 0 such that α||x∗ − x||η ≤ L(x) − L(x∗).

3. L(x∗) = 0.

then there exists a constants κ,K > 0 such that for all t ∈ R+

||x(t) − x∗|| ≤ Ke−κt. (3.11)

Proof.
dL(x(t))

dt
= f (x(t)) · ∇L(x(t)) ≤ −γL(x(t)).

So long as x(t) , x∗, L(x(t)) > 0, thus dividing by L(x(t)) and integrating
gives

log L(x(t)) − log L(x(0)) =

∫ t

0

1
L(x(s))

dL(x(s))
dt

ds ≤ −γt

Rearrganging gives
L(x(t)) ≤ L(x(0))e−γt

This gives exponential convergence in L(x(t)) and quick application
of the bound in the 2nd assumption gives

||x(t) − x∗|| ≤
L(x(0))
α

e−
γ
η t.

�

• We can assume the 2nd assumption only holds on a ball ar-
round x∗. We have convergence from Theorem 1, so when x(t)
is such that assumption 2 is satisfied we can then apply the
same analysis for an exponential convergence rate. Ensuring
the 2nd assumption locally is more easy to check, eg. check L
is positive definite at x∗.
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References
The Lyapunov method goes back to Lyapunov in (1892) [29]. Ex-
tensions were considered by La Salle [26]. A widely used textbook
treatment is Khalil [23]. Applications to internet congestion control
are given by Srikant [36]. The convex Lyapunov function proof is
the an o.d.e adaptation to the result of [48].
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3.4 ODEmethod for Stochastic Approxima-
tion

We consider the Robbins-Monro update

xn+1 = xn + αn[g(xn) + εn]

The condition for convergence used was

∞∑
n=0

αn = ∞,
∞∑

n=0

α2
n < ∞ . (RM)

Put informally, the condition
∑

n αn is used to keep the process mov-
ing [albeit inn decreasingly small increments] while the condition∑

n α
2
n ensures that the noise from the process goes to zero.

Given that noise is suppressed and increments get small, it is
natural to ask how close the above process is to the ordinary differ-
ential equation

dz
dt

= g(z(t)).

Moreover, can Lyapunov stability results [that we applied earlier] be
directly applied to prove the the convergence of the corresponding
stochastic approximation scheme? Often, the answer is yes. And
this has certain conceptual advantages, since the Lyapunov condi-
tions described earlier can be quite straightforward to establish and
also we don’t need to directly deal with the compounding of small
stochastic errors from the sequence εn.

The set up. The idea is to let

tn =

n∑
k=0

αk and T = {tn : n ∈ Z+} .

Here tn represents the amount of “time" that the process has been
running for. We then let

x(t) = xn, for t = tn.3

3We could also linearly interpolate between these terms to define x(t) for all
t ∈ R+, but we choose not to do this as it provides no new insight and only serves
to lengthen the proof.
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We let zm be the solution above o.d.e. started at xm at time tm, that
is

dzm

dt
= g(zm(t)), and zm(tm) = xm.

We then compare x(t) and zm(t) to see how much error has accumu-
lated since time tm. More specifically we are interested in

sup
t∈[tm,tm+T]∩T

||x(t) − zm(t)|| .

Assumptions. In addition to the Robbins-Monro condition (RM),
we make the following assumptions.

• g is Lipschitz continuous.

• For Fn = (xm, εm−1 : m ≤ n)

E[εn|Fn] = 0

and supnE[ε2] < ∞.

Main result. A key result that we will prove is the following propo-
sition

Proposition 1.

lim
m→∞

sup
t∈[tm,tm+T]∩T

||x(t) − zm(t)|| = 0 .

where convergence holds with probability 1 and in L2.4

Proof. Notice

zm(tn) = xm +

∫ tn

tm

zm(u)du

while

x(tn) = xm +

n−1∑
k=m

αkg(xk) +

n−1∑
k=m

αkεk = xm +

∫ tn

tm

g(x(bucα))du +

n−1∑
k=m

αkεk

4Convergence in L2 occur assuming || · || is the usual Euclidean distance.
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where bucα = max{tn : tn ≤ u}. So

||zm(tn) − x(tn)|| ≤
∣∣∣∣∣∣∣∣ n−1∑

k=m

αkεk

∣∣∣∣∣∣∣∣ +

∫ tn

tm

||g(zm(u)) − g(x(bucα))||du

≤

∣∣∣∣∣∣∣∣ n−1∑
k=m

αkεk

∣∣∣∣∣∣∣∣ +

∫ tn

tm

||zm(u) − x(bucα)||du

which implies by Gronwall’s Lemma [Theorem 123]

||zm(tn) − x(tn)|| ≤
∣∣∣∣∣∣∣∣ n−1∑

k=m

αkεk

∣∣∣∣∣∣∣∣eL(tn−tm)
≤

∣∣∣∣∣∣Mn −Mm

∣∣∣∣∣∣eLT . (3.12)

where the final inequality holds for tn such that tn − tm ≤ T, and we
define Mn =

∑n
k=1 αkεk. Notice that Mn, n ∈ N, is a martingale and

further

EM2
n =

n∑
k=1

αE[ε2
k] ≤ K

∞∑
k=1

α2
k < ∞

where K = maxkE[ε2
k]. Thus Mn is an L2 bounded Martingale and

thus convergence with probability 1 and in L2. Consequently Mn is
a cauchy sequence, meaning

lim
m→∞

sup
n≥m
||Mn −Mm|| = 0

with probability 1 and in L2. Applying this to (3.12) gives the re-
quired result

lim
m→∞

sup
t∈[tm,tm+T]∩T

||zm(t) − x(t)|| = 0 .

�

Applying the o.d.e limit. Before we focus on the proof of Proposi-
tion 1, it’s worth explaining how it can be applied. The main idea
is to

1. Check that the o.d.e. convergence by showing gets close to the
some desired set of points X? in T time units for each initial
condition xn, n ∈N.

2. Then apply Proposition 1 to show that the stochastic approxi-
mation is also close to the o.d.e at time T.
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This is sufficient to show that the stochastic approximation con-
verges to X?.

Here, we combine La Salle’s Invariance Principle, Theorem 2,
with Proposition 1, though, in principle, we could have considered
any of the ode results from Section 3.3. We assume that the as-
sumptions of Proposition 1 are satisfied. In addition we assume,

• Almost surely,
sup

n
||xn|| < ∞ .

Further we recall that for La Salle’s Invariance Principle, we as-
sumed there was a Lyapunov function L : Rd

→ R+ such that

• L is continuously differentiable .

• g(x) · ∇L(x) ≤ 0 for all x.

• The sets {x : L(x) ≤ l} are compact for all l.

Also we defined X? := {x : g(x) · ∇L(x) = 0}. Recall that La Salle’s
Invariance Principle stated that for all solutions to the o.d.e. dz/dt =
g(z(t)) with z(0) ∈ {x : L(x) ≤ l} there exists a T such that maxx?∈X? |z(t)−
x?| ≤ ε for all t ≥ T.

Theorem 6. For the stochastic approximation scheme

xn+1 = xn + αn[g(xn) + εn]

described in Proposition 1 and given a Lyapunov function L as de-
scribed above, it holds, with probability 1,

xn −−−→
n→∞

X
?

Proof. First we check that the o.d.e solutions zm(t) considered in
Proposition 1 are going to satisfy the conditions of La Salle. In par-
ticular, La Salle’s result requires o.d.e. solutions to all belong to
some compact set. Notice, since we assume that C := supn ||xn|| < ∞
we can let l = max{L(x) : ||x|| ≤ X} and take X = {x : L(x) ≤ l}. Since
L(z(t)) is decreasing for all solutions to the o.d.e. We see that zm(t) ∈ X
for all m and t ≥ tm.

Next we set up the bounds from the two results. From La Salle’s
Invariance Principle, we know that ∀ε > 0 ∃T > 0 such that ∀t ≥ T
and ∀m

min
x?
|zm(tm + t) − x?| ≤ ε .
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Taking this choice of T, we know from Proposition 1 that there exists
m? s.t. ∀m > m?

sup
t∈[tm,tm+2T]∩T

||x(t) − zm(t)|| ≤ ε.

Notice we can take m? suitably large so that αm =: tm− tm−1 ≤ T for all
m ≥ m?. Notice this implies that⋃

m:m≥m?

[tm + T, tm + 2T] = [tm? + T,∞) .

Now notice that if n is such that tn ∈ [tm + T, tm + 2T] for some m ≥ m?

then combining the inequalities above, gives that

min
x?
||xn − x?|| ≤ ||xn − zm(tn)|| + min

x?
||zm(tn) − x?|| ≤ 2ε .

Thus we see, with the union above, that for all tn ≥ tm + T it holds
that minx? ||xn − x?|| ≤ 2ε. In other words xn → X

? as required. �

References
The o.d.e approach to stochastic approximation was initiated by
Ljung [28]. Shortly after it is was extensively developed by Kushner,
see [25] and [24] for two text book accounts. The arguments above
loosely follow the excellent text of Borkar [9]. We shorten the proof
in several ways and consider L2 convergence. A further text with a
general treatment is Benveniste et al. [4].
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3.5 Asynchronous Update
We now consider Robbins-Munro from a slightly different perspec-
tive. Suppose we have a continuous function F : Rp

→ Rp and we
wish to find a fixed point x∗ such that F(x∗) = x∗. We assume that F(·)
is a contraction namely that, for some β ∈ (0, 1),

||F(x) − F(y)||∞ ≤ β||x − y||∞ . (3.13)

Here ||x||∞ = maxi=1,...,p |xi|. (Note this contraction condition implies the
existence of a fixed point). (Note the previous analysis was some-
what restricted to euclidean space.) If we suppose that we do not
observe F(x) but instead some perturbed version whose mean is F(x),
then we can perform the Robbins-Munro update for each compo-
nent i = 1, ...p:

xi(t + 1) = xi(t) + αi(t)(Fi(x(t)) − xi(t) + εi(t)) (RM-Async)

where αi(t) is a sequence such that for all i∑
t

αi(t) = ∞,
∑

t

α2
i (t) < ∞ . (RM step)

Further we suppose that εi(t − 1) is measurable with respect to Ft,
the filtration generated by {αi(s), xi(s)}s≤t measurable and

E[εi(t)|Ft] = 0 . (3.14)

We assume both the functions F(x) and the noise εi(t) are bounded.5

Asynchonous update. Note that in the above we let the step rule
depend on i. For instance at each time t we could chose to update
one component only at each step, e.g., to update component i only,
we would set α j(t) = 0 for all j , i. Thus we can consider this step
rule to be asynchronous.
Convergence result. We can analyze the convergence of this simi-
larly

Theorem 7. Suppose that F(·) is a contraction with respect to || · ||∞
(3.13), suppose the vector x(t) obeys the step rule (RM-Async) with

5However, we remark that this assumption can be relaxed significantly. At
some expense in doubling the length of the proof. See [40].
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step sizes satisfying (RM step) and further suppose that F(x) and
noise terms are bounded, then

lim
t→∞

x(t) = x∗

where x∗ is the fixed point F(x∗) = x∗.

Proof of Theorem 7. We need to take some time to set up notation
and prove three short Lemmas. After this we can wrap up the proof.

First, we may assume with out loss of generality that x∗ = 0, since
the recursion above is equivalent to

xi(t + 1) − x∗ = xi(t) − x∗ + αi(t)(Fi(x(t)) − Fi(x∗) − xi(t) + x∗ + εi(t)) .

Given the assumption on Fi(x(t)) + εi(t) being bounded, we have
that that ||x(t)||∞ ≤ D0 for all t, for some D0 < ∞. Further define

Dk+1 = β(1 + 2ε)Dk .

Here we choose ε > 0 so that (1 + 2ε)β < 1 so that Dk → 0. By
induction, we will show that, given ||x(t)||∞ < Dk for all t ≥ τk for some
τl, then there exists a τk+1 such that for all t ≥ τk+1

||x(t)||∞ < Dk+1

We use two recursions to bound the behavior of xi(t):

Wi(t + 1) = (1 − αi(t))Wi(t) + αi(t)εi(t)
Yi(t + 1) = (1 − αi(t))Yi(t) + αi(t)βDk .

for t ≥ τk, where Wi(τk) = 0 and Y(τk) = 0. We use Wi(t) to sum-
marize the effect of noise on the recursion for xi(t) and we use Yi(t)
to bound the error arising from the function Fi(x) in the recursion.
Specifically we show that

|xi(t) −Wi(t)| ≤ Yi(t)

in Lemma 7 below. Further we notice that is a Robbin-Munro re-
cursion for Wi(t) to go to zero and Yi(t) to go to βDk.

Lemma 7. ∀t0 ≥ τk

|xi(t) −Wi(t)| ≤ Yi(t)
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Proof. We prove the result by induction. The result is clearly true
for t = τk.

xi(t + 1) = (1 − αi(t))xi(t) + αi(t)Fi(x(t)) + αi(t)εi(t)
≤ (1 − αi(t))(Yi(t) + Wi(t)) + αi(t)βDk + αi(t)εi(t)
= Yi(t + 1) + Wi(t + 1)

In the inequality above with apply the induction hypothesis on xi(t)
and bounds of Fi. The second equality just applies the definitions of
Yi and Wi. Similar inequalities hold in the other direction and give
the result. �

Lemma 8.
lim
t→∞
|Wi(t)| = 0

Proof. We know

E[Wi(t + 1)2
|Ft] ≤ (1 − 2αi(t) + α2

i (t))W(t)2 + αi(t)2E[ε(t)2
|Ft].

From the Robbins-Siegmund Theorem (Prop 91), we know that

lim
t→∞

W(t) = 0.

�

Lemma 9.
Yi(t) −−−→

t→∞
βDk

Proof. Notice

Yi(t + 1) − βDk = (1 − αi(t))(Yi(t) − βDk) = ... =

 t∏
s=1

(1 − αi(s))

 (Yi(0) − βDk)

The result holds since
∑

t αi(t) = ∞. �

We can now prove Theorem 7.

Proof of Theorem 7. We know that ||x(t)||∞ ≤ D0 for all t and we as-
sume ||x(t)||∞ ≤ Dk for all t ≥ τk. By Lemma 7 and then by Lemmas 8
and 9

|xi(t)| ≤ Yi(t) + |Wi(t)| −−−→
t→∞

βDk

Thus these exists τk+1 such that supt≥τk+1
||x(t)||∞ ≤ Dk+1. Thus by in-

duction we see that supt≥τk
||x(t)||∞ decreases through sequence of

levels Dk as k→∞, thus x(t) goes to zero as required. �
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4.1 Principles of Reinforcement Learning

• Overview of Reinforcement learning and terminology.

• Policy evaluation & policy improvement; exploration-exploitation
trade-off; model free control; function approximation.

First we discuss at a high level a few of the key concepts in Re-
inforcement learning. These will then be discussed in more precise
mathematical detail for specific examples and algorithms in subse-
quent sections.

Reinforcement Learning: Reinforcement Learning is the setting
where we do not know the transition probabilities of a Markov De-
cision Process (or we might want to approximate a control problem
with MDP). For instance, you might be able to simulate a problem
with states, actions and rewards but you do not have access to the
underlying dynamics of the simulation. Enough information must
be gathered to approximate the optimal action for each state.

Policy Evaluation and Policy Improvement: When we look at re-
inforcement learning algorithms the same principles that applied
to MDPs (with known transition probabilities) apply. I.e. we might
want to think of the steps of the algorithm either improving the
policy:

π(x) ∈ argmax
a∈A

{
r(x, a) + βEx,a [R(x̂, π0)]

}
or evaluating the reward function of the current policy

R(x, π) = Eπx

 ∞∑
t=0

βr(Xt, π(Xt))

 .
Although algorithms might be subject to more noisy estimates.

Exploration-Exploitation trade-off: Because transition probabili-
ties are unknown, when you are at a state, say x, there is a question
of whether you should perform the best action a∗ given the available
information and thus attempt to implement the best known policy;
or if you should chose a different (possibly random) action and thus
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get better information about the value of that action. I.e. there is
a trade-off between doing what is myopically best given the avail-
able information (exploitation) and trying something new incase it
might be better (exploration). (This is similar to policy evaluation
and improvement, but here we are interested in finding the statisti-
cal properties of each action rather than performing computations
on a function.) Problems that investigate exploration and exploita-
tion tradeoff in isolation are often called Multi-armed Bandit prob-
lems, and there is a vast recent literature on these topics as well as
a very well developed theoretical basis preceding this.

Model Free Control: Here we are especially interested in methods
that are model free. A method is model free when it does not require
an explicit estimation of the system dynamics, specifically, we don’t
try to estimate the transition probabilities Pa

xy for each action. For
instance, if we perform policy improvement based on an estimation
of the value function to V,

π(x) ∈ argmax
a∈A

r(x, a) +
∑

x̂

Pa
xx̂V(x̂)

then this is not model free, because we need to estimate Pa
xx̂ in addi-

tion to our estimate of the value function V. Instead we might con-
sider the Q-function of the MDP. This is the function Q(x, a) which
gives the value function for taking action a in state x and then af-
terward follow the optimal policy. If we perform policy improvement
based on an estimation of the Q-function

π(x) ∈ argmax
a∈A

Q(x, a)

then this is model free. We will discuss this in more detail in the
next section.

Function Approximation: If the set of state and actions is mod-
erately small then we can store functions of interest such as the
Q-function Q(x, a) as a table (or matrix) in computer memory. These
algorithms are often called table based methods. But for larger
problems or of problems with continuous state spaces and action
spaces, then it is not possible to store this information. Further
the likelihood of revisiting exactly the same state twice is vastly re-
duced. So often we have to infer relationships between states that
are "close" and hope that the value function is suitably continuous
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that this forms a good approximation. So here we might for in-
stance replace the value function Q(x, a) with some approximation
Qw(x, a) which is of lower dimension than Q(x, a). Here w represents
a weights that we use to parameterize our approximation (e.g. we
could approximate continuous real valued function with a polyno-
mial). Then we might look to find the best approximation:

min
w
E[(Q̂(x, a) −Qw(x, a))2] .

Here we let Q̂(x, a) be the Q-values of the current policy as observed
from the data seen so far and we look to find the weights that give
the best approximation. Above we minimize the mean-squared-
error of the loss function, but we could consider other metrics and
we could approximate other functions e.g. policies πw(x) ≈ πw(x).

Further Terminology.

Def 98 (Episode). When we run a sample path of an MDP under a
policy π we call this an episode.

Here we implicitly assume that each episode terminates, or re-
freshes after some finite time.

In reinforcement learning we are often fitting functions R(x, π),
Q(x, a) and π(x) using simulation data. Here performing updates of
the form

R(x)← R(x) + αd(x̂)

We need to specify when and how often we perform these updates.
These give different variants of each algorithm that we consider.

Def 99 (Offline and Online update). If we perform the update (4.1)
at the end of each episode simultaneously for each x then we say that
the update is offline. If we update (4.1) for each x in the order visited
by the episode, the we say this is online.

Note that we can perform online updates while we simulate an
episode, while offline we must wait for the episode to end. Note
that the offline algorithm updates are synchronous – we update all
components of R(x) simultaneously – while online algorithms asyn-
chronously update.

Def 100 (First Visit and Every Visit update). If we perform the up-
date (4.1) only once for the first visit to x then we say this is the first
visit. If we perform an update (4.1) for each visit to x we say this is
the every visit update.
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In an offline every-visit algorithm, we assume an update of the form

R(x)←− R(x) +

N∑
v=1

αd(x̂(v))

i.e. we only update R once at the end of the episode, but the update
applies a term for every visit v = 1, ...,N to x. While in an online
every-visit algorithm, we update

R(x)← R(x) + αd(x)

When we talk above different policy evaluation algorithms we can
talk about offline & online and first-visit & every-visit variants.
From a theoretical perspective offline first-visit algocrithms are eas-
ier to deal with. While from an implementation perspective, every-
visit online algorithms are more straight-forward to program (as we
don’t need to remember anything).

References.
The book of Sutton and Barto is the gold standard on reinforcement
learning [39] . Though to go a little deeper, I have benefited a lot from
reading the more mathematically rigorous text of Bertsekas and
Tsitsiklis [6]. Bertsekas has a new book on reinforcement learning
which I will likely reference once I have a copy!
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4.2 Policy Evaluation: MC and TD meth-
ods

• Monte-Carlo and Temporal differences.

• TD(0), n-step TD, TD(λ).

• Importance Sampling, Stopping Time and Tree back up.

We now begin to consider algorithms for Markov decision prob-
lems where the rewards are not known and, now, these need to be
estimated either through simulation or data. Recall from Section
1.5 that a MDP algorithm consists of two parts: policy evaluation
and policy improvement. Here we begin to see policy evaluation as
a statistical procedure rather than just linear algebra.

Our task in this section is to estimate the reward function

R(x, π) := Ex0

 ∞∑
t=0

βtr(Xt, πt)

 .
for a stationary policy π by generating episodes under the policy π.

Some Terminology
Since our policy π will not change in this section we will often sup-
press the dependence on π our notation. To estimate R(·), we will
be applying updates of the form

R(x)←− R(x) + αd(x̂) (4.1)

for each state x, where x̂ = (x̂0, x̂1, ...) is the set of states visited from
x̂0 = x onwards and where d is a function of some of these states
and the current reward function.
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Monte-Carlo Policy Evaluation
Monte-Carlo policy evaluation is the simplest method of evaluating
a policy. Here you simply run a number of episodes under a policy
and calculate the mean future reward for each state. As is shown
in Lemma 10 below, it is not hard to see that we calculate the mean
of N data points empirically through the recursion:

R̄← R +
1
N

(R̃ − R̄) .

Def 101 (Monte-Carlo Policy Evaluation). When x is visited in an
episode update

N(x)← N(x) + 1

R̄(x)← R̄(x) +
1

N(x)

(
R̃(x) − R̄(x)

)
where

R̃(x) = r(x̂0) + βr(x̂1) + ....βTr(x̂T)

is the observed reward after visiting state x to the end of the episode.
Also N(x) is the number of visits to x and R̄(x) is the mean.

This update can be done on every visit to state x or the first time x is
visited in an episode. Monte-Carlo Policy Evaluation convergences
to the reward function

Proposition 2.
R̄(x) −−−−−→

N(x)→∞
R(x) = E[R̃(x)] .

The proof follows immediately from the strong law of large numbers.
Advantages and disadvantages. Monte-Carlo policy evaluation
has the advantage that it is simple and intuitive. Further it is an
unbiased estimate of the true reward. However, it requires a full
episode to perform an update. The variance of a full episode’s re-
ward can be quite big.

1

1It the environment is continuing you can choose a state to be a “starting
state", and assuming that state is recurrent then you can reset the episode every
time that state is visited.
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Remark 102 (Forgetting the past). We can also perform an update
where we don’t divide by the number of visits:

R̄(x)← R̄(x) + α(R̃(x) − R̄(x)) .

Note that after N updates we get that:

R̄(x) = αR̃N + α(1 − α)R̃N−1 + α(1 − α)2R̃N−2 + ... + α(1 − α)N−1R̃1.

This puts a focus on the most recent rewards. (This can be useful if
the policy has been changing a small amount over each step, and we
care about the more recent information.)

Lemma 10. For data a1, a2, ..., we let āN be the mean of the first N
pieces of data, i.e.

āN =
1
N

N∑
n=1

an

Notice ān obeys the recursion:

āN+1 =
1
N

(aN+1 − āN)

Proof. After N iterations, the algorithm update gives

N × āN = N ×
(
āN−1 +

1
N

(aN − āN−1)
)

= aN + (N − 1)āN−1

= ... =
N∑

n=1

ãn.

Above we can repeat the same substitution on (N − 1)aN−1 as we did
for NaN. �
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Temporal Difference Learning
Like Monte-Carlo the temporal difference method is a way of es-
timating the value function of a dynamic program. While Monte-
Carlo required us to evaluate a whole episode of a simulation. Tem-
poral difference methods cut this short, so that, in principle, we
can update our reward estimate at simulation step.

Recall, that for any Markov chain the reward function satisfies

R(x) = Ex[r(x, x̂) + βR(x̂)] (4.2)

or, equivalently,

R(x) = R(x) + E
[
r(x, x̂) + βR(x̂) − R(x)

]
which is a fixed point of the operation

R(x) α
←− E

[
r(x, x̂) + βR(x̂) − R(x)

]
which, in turn, can be approximated by

R(x) α
←− r(x, x̂) + βR(x̂) − R(x).

The update term, above, is called a Temporal Difference, and the
algorithm given described is called TD(0). The above recursion is an
asynchronous Robbins-Munro step rule and so by Theorem 7 the
algorithm converges to the correct reward function. We summarize
each of these points below.

Def 103 (Temporal Differences). The above term

d(x, x′) = r(x, x′) + βR(x′) − R(x)

is called a temporal difference.

Def 104 (TD(0)). The algorithm where on every visit to x we perform
the update:

R(x) α
←− r(x, x̂) + βR(x̂) − R(x)

is called TD(0). Here TD stands for Temporal Difference.

Theorem 8. If αt(x) the learning rate applied in TD(0) at state x after
t iterations is such that

∞∑
t=0

αt(x) = ∞,
∞∑

t=0

α2
t (x) < ∞,
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and if each state x ∈ X is visited infinitely often then the TD(0) reward
estimate after t iterations, Rt(x), is such that

Rt(x) −−−→
t→∞

R(x) := Ex

 ∞∑
s=0

βsr(xs, xs+1)


where the reward function, satisfying (4.2).

Proof. Notice that Rt(x) follows the update

Rt+1(xt) = αt(xt)
[
r(xt, xt+1) + βR(xt+1)

]
and Rt+1(x′) = Rt(x′) for all x′ , xt. This is an asynchronous Robbins-
Munro scheme, and by Theorem 7 convergence almost surely to R(x)
satifying the condition

R(x) = Ex[r(x, x̂) + βR(x̂)]

which by our result of rewards for Markov chains, Proposition 13
(see the proposition subsequent remark too), is equal toEx[

∑
∞

s=0 β
sr(xs, xs+1)].
�

Remark 105. Very similar convergence proof exists for the other TD
methods mentioned in this section: n-step TD and TD(λ). For instance
the proof of n-step TD is almost identical. The proof for TD(λ) follows
in a similarly straightforward manner, we also refer the reader to [40,
Section 5.3] for a proof.

n-Step TD

In (every-visit) Monte-Carlo Policy Evaluation, to estimate the re-
ward we added the whole sequence of future rewards whereas in
TD(0) we only add one reward at a time. Therefore we can presume
that TD(0) has considerably lower variance, but perhaps at the cost
bias in our estimate. We can extend the TD update to include more
than one reward.

We can expand out the Bellman equation over n-steps:
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R(x̂0) = R(x̂0) + E
[
r(x̂0, x̂1) + βR(x̂1) − R(x̂0)

]
...

= R(x̂0) + E

 n−1∑
t=0

βtr(x̂t, x̂t+1) + βnR(x̂n) − R(x̂0)


= R(x̂0) + E

 n−1∑
t=0

βtd(x̂t, x̂t+1)


In TD(0) we update by adding the first temporal difference after

visiting x discounting each by a factor β. Suppose now we update
by adding the next n temporal differences after visiting x.

Def 106 (n-Step TD). The update

R(x) α
←−

n−1∑
t=0

βtd(x̂t, x̂t+1) =

n−1∑
t=0

βtr(x̂t, x̂t+1) + βnR(x̂n) − R(x̂0)

is called n-step TD.

Notice that∞-step TD is exactly Monte-carlo policy evaluation. And
notice 1-step TD is TD(0).
A Bias-Variance Decomposition. We can look at the n-step TD
update as moving a prediction R(x) towards a target observation

TD target =

n∑
t=1

βtr(x̂t) + βn+1R(x̂n+1)

Thus, if Rπ(x) is the true reward of the policy being evaluated then
the temporal difference error is

TDn :=
n∑

t=1

βtr(x̂t) + βn+1R(x̂n+1) − Rπ(x̂0)

Like with regression, we can analyze the bias and variance of these
predictions.

Lemma 11 (Bias-Variance Decomposition for n-step TD).

E[TD2
n] = β2nEx[Rπ(x̂n) − R(x̂n)]2︸                      ︷︷                      ︸

Bias

+ β2nV(R(x̂n)) +V
(∑n−1

t=0 β
tr(x̂t)

)
︸                                 ︷︷                                 ︸

Variance
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Notice this splits the n-step TD error into two terms one bias term
and two variance terms: one for the time n predicted future reward,
R(x̂n); and one for the cumulated reward over n steps

∑n−1
t=0 β

tr(x̂t).

Proof.

Ex[TD2
n] = Ex

[(
Rπ(x̂0) − βnR(x̂n) −

∑n−1
t=0 β

tr(x̂t)
)2]

= Ex

[
Rπ(x̂0) − βnR(x̂n) −

∑n−1
t=0 β

tr(x̂t)
]2

+ Ex

[(
βnR(x̂n) +

∑n−1
t=0 β

tr(x̂t) − Ex

[
βnR(x̂n) −

∑n−1
t=0 β

tr(x̂t)
])2

]
= β2nEx[Rπ(x̂0) − R(x̂n)]2

+ E[
(
βnR(x̂n) − E[βnR(x̂n)]

)2]

+ E[
(∑n−1

t=0 β
tr(x̂t) − E

[∑n−1
t=0 β

tr(x̂t)]
)2 ]

= β2nEx[Rπ(x̂n) − R(x̂n)]2 + β2nV(R(x̂n)) +V
(∑n−1

t=0 β
tr(x̂t)

)
.

In the 2nd equality, we add and subtract Ex[βnR(x̂n)−
∑n−1

t=0 β
tr(x̂t)] and

then expand. In the 3rd equality, we note for the 1st expectation
that Rπ(x) − Ex[

∑n−1
t=0 β

tr(xt)] = βnE[Rπ(x̂n)] and we expand the 2nd ex-
pectation into two terms. �

Remark 107. Notice that if rewards are roughly IID with variance σ2

thenV
(∑n−1

t=0 β
tr(x̂t)

)
= σ2(1 − β2n)/(1 − β). Thus the decomposition takes

the form:

E[TD2
n] = β2n

[
Ex[Rπ(x̂n) − R(x̂n)]2 +V(R(x̂n)) −

σ2

1 − β

]
+

σ2

1 − β

This gives some intuition on the number of steps n. Basically, de-
pending on whether the term in square brackets is positive or nega-
tive we should choose n large or small. Specifically if there is high
error or high variance in the future expected reward then n should be
increased in size. However, if there is small 1error and small vari-
ance in future expected reward relative to the variance in individual
rewards, then n should be small. This could for instance imply that
the number of steps in the TD algorithm should be reduced for later
stages of training.
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TD-Lambda.?

Similar to n-step TD, we want to consider continuous update where
we can trade off bias and variance. Again like n-step TD, TD-Lambda
will represent a set of methods with Monte-Carlo policy evaluation
on the one extreme and TD(0) on the other. TD-Lambda continu-
ously parameterizes this range (rather than the discrete way that
n-step TD.

We break this into two pieces first describing an off-line TD(λ)
update and then adapt it to give a more practical online update.

Remark 108. At a practical level, n-step TD methods are much more
simpler to understand and code up. They achieve much the same
goal as TD-lambdamethods. TD-Lambda is elegant in their use of the
memoryless property of the geometric distributions. However, (in my
opinion) TD-lambda methods are arguably a marginal improvement
on n-step TD methods.

TD(λ) – Offline

Under n-step TD we need to look forward through the next n-steps
of the algorithm and then preform an update. TD(λ), which we de-
scribe shortly, makes use of the memoryless property of the geomet-
ric distribution to give a simplified update equation. In particular,
suppose that we apply n-Step TD with weight (1 − λ)λn then at the
end of each episode we perform the update

R(x) α
←−

∞∑
n=0

(1 − λ)λn
n∑

k=0

βkd(x̂k, x̂k+1) =

∞∑
k=0

λkβkd(x̂kx̂k+1)

for each x. Here we let x̂0 be the first visit to x and we let x̂1, x̂2, ... be
the subsequent states.

Def 109 (TD(λ) – Offline). The above update equation above gives
the Offline update for TD(λ) under a first visit update.

If we perform the above update at the end of each episode for every
visit to x, we have

R(x) α
←−

∞∑
v=1

∞∑
k=0

λkβkd(x̂(v)
k x̂(v)

k+1)

where x̂(v)
0 be the vth visit to x and we let x̂(v)

1 , x̂
(v)
2 , ... be the subsequent

states, then we gain the every visit update formulation.
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Notice λ = 0 corresponds to TD(0) and TD(1) gives Monte-Carlo
policy evaluation. Like n-step TD, trades bias and variance through
its parameter λ.

TD(λ) – Online

The TD(λ) algorithm appears to only work offline, as we need to
record the chain’s transitions over the whole episode and then up-
date each term. However we can see a much simpler view exists
by extracting the contribution of each term to the update. We now
construct an update at every time step rather than at every visit.

Suppose we visited x just once at time τ. The contribution to the
update at the end of the episode is

R(x)←− R(x) + α
∞∑

t=τ

(λβ)t−τd(xt, xt+1)

We could view this single update as a sequence of updates occurring
at each time. So if we update at every time t, the contribution from
this visit to x at time τ would be

R(x)← R(x) + α(λβ)t−τ︸   ︷︷   ︸
=:E(t)

d(xt, xt+1)

We could express the recursion that E(x) satisfies more compactly
as follows:

E(x)← (λβ)E(x) + αI[xt = x] (4.3)

Notice, if we wanted to implement the every-visit update, the above
recursion would stay the same. If we wanted to implement the first-
visit update the indicator function above would only be applied at
the first visit to x (and be zero there-after).

Def 110 (Eligibility Trace). E(x) as described above, (4.3), is called
the eligibility trace of the episode

The eligibility trace records a weighted count of how many times
x has been visited so far. Notice, because λ is applied geometrically
in TD(λ), we do not need to record how long since x was last visited.

We can now perform an online version of TD(λ)
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Def 111 (TD(λ) – Online). At each time step with current state x and
next state x̂, perform the following update to every state x′

E(x′)← (λβ)E(x′) + αI[x′ = x]
R(x′)←− R(x′) + E(x′)d(x, x̂).

Here d(x, x̂) is the current temporal difference, and we start initially
with E(x) = 0.

Further TD methods.
We briefly mention a few quick generalization of the TD methods.

Importance Sampling. Suppose that we want to evaluate R(x) =

EP
x

[∑
t β

tr(x̂t)
]
where Pxy gives the probability of transitions. However,

the simulator used does transitions with probability Qxy. Then

EP
x [ f (x, x̂)] =

∑
y

Pxy f (x, y) =
∑

y

Qxy
Pxy

Qxy
f (x, y) = EQ

x

[
Pxx̂

Qxx̂
f (x, x̂)

]
for any function f : X2

→ R. For instance, TD(0) is searching for the
fixed point

0 = EP
x
[
r(x) + βR(x̂) − R(x)

]
= EQ

x

[
r(x) + βR(x̂)

Pxx̂

Qxx̂
− R(x)

]
.

Thus, given the simulator generates transitions under Q, an impor-
tance sampled TD(0) w.r.t. P would be

R(x) α
←− r(x) + βR(x̂)

Pxx̂

Qxx̂
− R(x) .

Notice importance sampling for more general functions would be,

EP
x [ f (x̂0, ..., x̂t)] = EQ

x

 f (x̂0, ..., x̂t)
t−1∏
s=0

Px̂s,x̂s+1

Qx̂s,x̂s+1

 .
We leave it to the reader to use this to figure more general impor-
tance sampling update rules e.g. for Monte-carlo, n-step, TD(λ).
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Stopping Times. If σ is a stopping time then we can update at a
stopping time and the appropriate TD update is

R(x̂0) α
←− r(x̂0) + ... + βσ−1r(x̂σ−1) + βσR(x̂σ) − R(x̂0)

Notice TD(λ) is essential this update with the stopping time being a
geometrically distributed with parameter λ. We include the possi-
bility that σ = ∞ in which case Monte-carlo methods are included.
Further n-step and TD(0) are instances where the stopping time is
constant.
Resampling and Branching. Suppose τ is a stopping time. For
example, τ could be the time the total reward so far goes above some
predetermined level. We can resample the trajectory from the point
τ and perform two or more update. Thus we can search around
that point for good trajectories.
Insert Picture here

For two updates, suppose x̂(1)
τ+1, x̂

(1)
τ+2, ..., x̂

(1)
σ(1) and x̂(2)

τ+1, x̂
(2)
τ+2, ..., x̂

(2)
σ(2) are

two trajectories for stopping times σ(1) and σ(2) after time τ. We can
then perform two TD updates

R(x̂0) α
←−

τ∑
t=0

βtr(x̂t) +

σ(1)
−1∑

t=τ+1

βτ+1r(x̂(1)
τ+1) + βσ

(1)
R(x̂(1)

σ(1)) − R(x̂0)

R(x̂0) α
←−

τ∑
t=0

βtr(x̂t) +

σ(2)
−1∑

t=τ+1

βτ+1r(x̂(2)
τ+1) + βσ

(2)
R(x̂(2)

σ(2)) − R(x̂0) .

Even if the event τ does not occur, (and thus σ(1), σ(2) and τ are all
infinite) then you still need to update the objective twice, otherwise
you introduce bias into the system.
TD Trees. The above argument gives a simple method for resam-
pling and branching. With this branching argument, we can in
principle branch an arbitrary predetermined number of times. Here
we can create a tree and we must perform an update for each leaf
in that tree (even if the associated stopping time is infinite). This
somewhat related to the idea of Monte-Carlo Tree search which we
will discuss later.

References.
Temporal difference methods were introduced by Sutton [38]. So
the text of Sutton and Barto is the best place to go to to read more
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on this [39].
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4.3 Q-learning

• Q-learning and a proof of convergence.

Q-learning is an algorithm, that contains many of the basic
structures required for reinforcement learning and acts as the basis
for many more sophisticated algorithms. The Q-learning algorithm
can be seen as an (asynchronous) implementation of the Robbins-
Munro procedure for finding fixed points. For this reason we will
require results from Section 3.1 when proving convergence.

A key ingredient is the notion of a Q-factor as described in Sec-
tion 1.4. Recall that optimal Q-factor, Q(x, a), is the value of starting
in state x taking action a and thereafter following the optimal policy.
In Prop 30 we showed that this solved the recursion:

Q(x, a) = Ex,a[r(x, a) + βmax
â

Q(X̂, â))] . (4.4)

Def 112 (Q-learning). Given a state x, an action a, its reward r(x, a)
and the next state x̂, Q-learning performs the update

Q(x, a) α
←− r(x, a) + βmax

a′∈A
Q(x̂, a′) −Q(x, a)

where α positive (learning rate) parameter. Recall x α
←− dx means reset

x with x′ such that x′ = x + αdx.
To implement this as an algorithm, we assume that we have a se-

quence of state-action-reward-next_state quadruplets {(xt, at, rt, x̂t)}∞t=0
and we apply the above update to each of the terms in this sequence.

Thrm 113. For a sequence of state-action-reward triples {(xt, at, rt, x̂t)}∞t=0
Consider the Q-learning update for (x, a, r, x̂) = (xt, at, rt, x̂t)

Qt+1(x, a) = Qt(x, a) + αt(x, a)
(
r + max

a′
Qt(x′, a′) −Qt(x, a)

)
if the sequence of state-action-reward triples visits each state and
action infinitely often, and if the learning rate αt(x, a) is an adapted
sequence satisfying the Robbins-Munro condition

∞∑
t=1

αt(x, a) = ∞,
∞∑

t=1

α2
t (x, a) < ∞
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then, with probability 1,

Qt(x, a)→ Q∗(x, a)

where Q∗(x, a) is the optimal value function.
Proof. We essentially show that the result is a consequence of The-
orem 7 in Section 3.1. We note that the optimal Q-function, Q =
(Q(x, a) : x ∈ X, a ∈ A) satisfies a fixed point equation

Q = F (Q) ,

with
Fx,a(Q) = Ex,a[r(x, a) + βmax

â
Q(X̂, â)] ,

for each x ∈ X and a ∈ A. We know from Prop 30 that for discounted
programming F (·) is a contraction. I.e.

||F (Q1) − F (Q2)||∞ ≤ β||Q1 −Q2||∞ .

Now notice that the Q-learning algorithm performs the update

Qt+1(x, a) = Qt(x, a) + αt(x, a)(F(Q)(x, a) −Qt(x, a) + ε(x, a)) ,

where

ε(x, a) = r + βmax
â

Q(X̂, â) − Ex,a[r(x, a) + βmax
â

Q(X̂, â)]

for (xt, at, rt, x̂t) = (x, a, r, x̂). The update above is a Robbin’s Munro up-
date. FurtherbNotice Q(x′, a′) remains the same for all other values
of x, a, the update is asynchronous. It is not hard to see that when
we condition on Ft the set of previous actions and states that

E[εt(xt, at)|Ft] = 0

and, a quick calculation shows,2 that

E[εt(xt, at)2
|Ft] ≤ 2r2

max + 2β2 max
x,a

Qt(x, a)2 .

From this we see that we are working in the setting of Theorem 7
and that the condtions of that theorem are satisfied. Thus it must
be that

Qt(x, a) −−−→
t→∞

Q∗(x, a)

where Q∗(x, a) satisfies Q∗ = F (Q∗). In otherwords, as required, it
satisfies the Bellman equation for the optimal Q-function and thus
is optimal. �

2Note (x + y)2
≤ 2x2 + 2y2
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Q-learning code with learning step and ε-greedy exploration.3

class Q_learning ( Q_function ) :
def __ in i t__ ( se l f , l r =0.1) :

s e l f . l r = l r

def learn ( se l f , state , action , reward , next_state ,
done=False , discount =1.) :

s e l f .add ( state , action )
se l f .add ( next_state )

dQ = reward \
+ discount ∗ se l f .max( next_state ) \
− se l f [ state ] [ action ]

i f done :
dQ = reward − se l f [ state ] [ action ]

se l f [ state ] [ action ] += se l f . l r ∗ ( dQ )

def action ( se l f , state , explore_prob =0.) :

i f random.random ( ) > explore_prob :
return se l f .argmax ( state )

else :
Actions = l i s t ( s e l f [ state ] . keys ( ) )

random_action = random. choice ( Actions )
return random_action

Other variants.
We will discuss some variants in separate sections, but we discuss
a few simple variants of Q-learning.

Double Q-learning. Double Q-learning, as the name suggests, is
a variation of Q-learning where you maintain two Q-functions Q(A)

and Q(B) and you update one in terms of the other:

Q(A)(x, a) α
←− r(x, a) + βQ(A)(x̂, b̂) −Q(A)(x, a)

Q(B)(x, a) α
←− r(x, a) + βQ(B)(x̂, â) −Q(B)(x, a)

3The code is subclass of a dictionary object with .max, argmax, .add methods.
Here .add adds new states or actions to the Q-function.
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where
â = argmax

a∈A
Q(A)(x, a) and b̂ = argmax

b∈A
Q(B)(x, b) .

It’s not really clear at first why this should help. The problem
it tries to resolve is this: in traditional Q-learning there is a max-
imization over actions and the Q-factor is a noisy estimate of the
optimal Q-factor. In general, it is true that

E[max
â

Q(x̂, â)] ≥ max
â
E[Q(x̂, â)]

with the inequality being increasingly strict the more random the
Q-function estimate Q(x̂, ·) is.

The reason it helps is the following: suppose Aa and Ba are in-
dependent identical random variables with mean Ā for each a ∈ A.
Suppose â = argmaxa Aa and b̂ = argmaxa Ba. Notice

E[Aâ] > max
a

Āa,

but E[Ab̂t] = Āb̂ (here we take the expectation over A given B) so

E[Ab̂] = E[Āb̂] < max
b

Āb

In summary, we go from over-estimating the maximum A to under-
estimating. In general, it depends if over-estimating is worse than
under-estimating. However, over estimating tends to occur due to
outliers that can mess up training (particularly if function approx-
imation is being used). So to achieve training with more modest
updates double Q-learning is generally a good idea. Further conver-
gence is guaranteed by much the same analysis as for Q-learning.
(We leave this proof as an exercise for the reader).

Advantage Updating / Duelling. For Q-learning the value func-
tion V which is the largest Q-factor determines the optimal policy.
However, the magnitude of the value function V can differ from the
relative sizes of the Q-factors. Specifically, during training the Q-
factors of several action can get be close to V but V can be really
big. The value of the Q-factor update is dominated by the size of V
and so this can mean sub-optimal actions can often fluctuate above
their true values and thus inhibit convergence.

The idea of advantage updating is to separate our the task of
finding V from the task of finding how much less Q is relative to V.
The difference between V and Q is called the advantage and it is
defined as follows:
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Def 114 (Advantage). For a value function V(x) and Q-factors Q(x, a),
the advantage function is defined by

A(x, a) := Q(x, a) − V(x), x ∈ X, a ∈ A .

Notice for optimal Q-factors and values, the advantage function
is negative (when maximizing) and equal to zero for optimal actions.
Under a general policy, if the advantage function is positive for some
a then this suggests that improvement to the current policy can be
made by increasing the probability of playing action a.

An advantage updating algorithm does the following steps when
each state action-pair is visited:

A(x, a)←− A(x, a) − Amax(x) (4.5a)

A(x, a) α
←− r + βV(x̂) − V(x) + Amax(x) − A(x, a) (4.5b)

V(x)
γ
←− ∆Amax(x)/α (4.5c)

t where Amax(x) := maxa A(x, a) and ∆Amax(x) is size of the last change
in the value value of Amax(x) (from step (4.5b)).

If we take γ = α, the following algorithm is really just the Q-
learning algorithm.
Proposition 3. If γ = α then, when (4.5) is applied,

Q(x, a) = V(x) + A(x, a) − Amax(x) , (4.6)
obeys the Q-learning update. Consequently, the policy implied by the
advantage function A(x, a) converges to the optimal policy.
Proof. Clearly,

V(x) = max
a

Q(x, a) . (4.7)

Notice that step (4.5a) of the algorithm sets Amax(x) = 0. Also notice
that any shift in A(x, a) applied equally to all a will not effect the
change applied in the update (4.5b). The update (4.5c) ensures that

V(x) − Amax(x) = Ṽ(x) − Ãmax(x) (4.8)
where Ṽ and Ã denotes the values before the update are made. So
here V(x)−Amax(x) stays constant. If we add this to both sides of (4.8)
to the final update (4.5c) and then apply (4.6) and (4.7) we recover:

Q(x) = V(x) + A(x, a) − Amax(x)
←− V(x) + A(x, a) − Amax(x)

+ α
(
r + βV(x) − V(x) − A(x, a) + Amax(x)

)
= Q(x, a) + +α

(
r + βmax

a
Q(x, a) −Q(x, a)

)
.
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Q-learning converges under the appropriate step size choice given
in Theorem 113. So since Q(x, a) convergence and V(x) = maxa Q(x, a),
V(x) convergences. Thus A(x, a) − Amax from (4.6) convergence and
since Amax = 0 we see that the advantage functions converge, and
these (along with Q(x, a)) imply the policy given by A(x, a) in the limit
is optimal. �

Although advantage updating above is more-or-less identical to
Q-learning, the changes are more pronounced when we later apply
function approximation with a Neural Network. In this situation,
a Q-learning step only applies an update to each state action pair,
but advantage updating applies an update to both V(x) and one
value of A(x, a). Thus each update has an impact on every Q-value
through V(x). The combination of advantage updating and func-
tion approximation have come to be called these are called Duelling
architectures.

References.
This section is based on reading Tsitsiklis [40]. An alternative proof
is given by Jaakkola et al.[22] which applies a slightly esoteric fixed
point method of Dvoretzky.

Double Q-learning is first proposed by Hasselt [20]. The Advan-
tage updating algorithm [with some minor modification to (4.5a)] is
first given by Baird [2]. Both ideas have been successfully applied
with neural network function approximation [43, 44].
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4.4 SARSA
We consider a simple variant of Q-learning called Sarsa. Here SARSA
stands for State, Action, Reward, (next) State, (next) Action. This is
defined as follows.

Def 115 (Sarsa). Under Sarsa, starting in state x take action a (as
say ε-greedy from Q), then observe x̂ and reward r(x, x̂). Next, take
the action for that â (under the same rule derived from Q. then update

Q(x, a) α
←− r(x, x̂) + βQ(x̂, â) −Q(x, a)

and continue from state and action x̂, â.

Notice, unlike with Q-learning, the value of the update depends
on the policy generating states and actions. For instance, if action
are chosen uniformly at random then the Sarsa update will converge
to the reward function of the randomized policy, while Q-learning
will still converge to the optimal value function.

To account for this we have to let our choice of actions converge
to the optimal action for each state. Such policies are called GLIE
where GLIE stands for Greedy in the Limit with Infinite Exploration.

Def 116 (GLIE). A policy is GLIE if

• each action is chosen infinitely often for every state,

• the greedy action with respect to the Q-function is chosen with
probability 1 in the limit.

The most straight forward choice of GLIE policy is ε-greedy (recall
the section on Bandits) where ε = 1/Nt where Nt is the number of
episodes simulated by time t.

Given the policy is GLIE and each state is visited infinitely often
then Sarsa will converge to the optimal Q-function.

Theorem 9. For a discounted program, if each state is visited in-
finitely often and actions are chosen by a GLIE policy at each state
then Sarsa converges to the optimal value function with probability 1.

Proof. The proof is much the same as for Q-learning. Note that
Sarsa makes the update

Qt+1(x, a) = Qt(x, a) + αt(x, a)
{
r(xt, at) + βQt(xt+1, at+1) −Qt(xt, at)

}
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where here αt(x, a) = 0 for (x, a) , (xt, at). Now focusing on x = xt and
a = at, we can rearrange the above expression as follows

Qt+1(xt, at)

= Qt(xt, at) + αt(xt, at)
{
r(xt, at) − βmax

â
Qt(xt+1, x̂) −Qt(xt, at)

}
+ αt(xt, at)β

[
max

â
Qt(xt+1, x̂−Qt(xt+1, at+1)

]
= Qt(xt, at) + αt(xt, at)

[
Fxt,at(Qt) −Qt(xt, at)

]
+ αt(xt, at)δt + αt(xt, at)βet

where here
Fx,a(Q) := Ex,a[r(x, a) + βmax

â
Q(x̂, â)]

which is the same β-contraction used in the proof for Q-learning;
and

δt :=r(xt, at) + βmax
â

Qt(xt+1, â) −Q(x, a) − E[r(xt, at) + βmax
â

Q(xt, â) −Q(xt, at)|Ft]

+ max
â

Qt(xt+1, â) −Qt(xt+1, at+1) − E[max
â

Qt(xt+1, â) −Qt(xt+1, at+1)|Ft]

where here Ft = (xs, as : s ≤ t) and we note that δt is a bounded
Martingale difference sequence; and

et+1 = E
[
max

â
Qt(xt+1, â) −Qt(xt+1, at+1)

∣∣∣∣Ft

]
which satisfies

et → 0

as t→∞, since Qt(x, a) is bounded (note each update is bounded for
a discounted progrma) and our policy is GLIE (so the probably of
choosing the maximizing action goes to one).

Thus if we define εt = δt + βet, then we safisfy exactly the condi-
tions of the Asynchronous Robbins-Munro update 3.5 in Theorem
7, that is

Qt+1(x, a) = Qt(x, a) + αt(x, a)
[
Fx,a(Qt) −Qt(x, a) + εt

]
and by that result, for all x, a,

Qt(x, a) −−−→
t→∞

Q∗(x, a)

where Q? = F(Q?) or, in other words,

Q?(x, a) = Ex,a[r(x, a) + βmax
â

Q(x̂, â)] .

So the Bellman equaiton is satisfied and so the limit Q?(x, a) is the
optimal value function. �
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So it is good that we have a convergence proof. However, it is
easy to construct simple examples of GLIE policies where SARSA
does not converge (as states are not automatically visited infinitely
often for GLIE policies)

Remark 117. Consider the following example. Insert Picture
Here there are two actions, and two states with rewards where the
process terminates. Suppose we apply an ε-greedy policy with ε =
1/N where N is the number of episodes so far. If we assume that
initially Q(x, 0) > Q(x, 1) for all x, the probability of visiting state x = 2
is 1/N2 and the sum of these probabilities

∑
N 1/N2 is finite. Therefore

by the Borel-Cantelli Lemma there can only be finitely many visits
to x = 2 while Q(x, 0) > Q(x, 1). Thus there is a positive probability
that SARSA will stop visiting x = 2 and thus the Q function will not
converge to the optimal Q-function.
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Function Approximation
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5.1 Overview of Statistical Learning
In this section we overview Statistical Learning which essentially
considers finding good function approximations to noisy data.

We give a fairly general definition of a supervised learning prob-
lem. We assume an output y ∈ Y is a noisy function of an input
x ∈ X

y = f (x) + ε ,

here ε is a random variable with zero mean and we assume that
the function f : X → Y a deterministic function. Notice this implies
f (x) = E[y|x]. (Typically X and Y are be finite-dimensional real-
valued vector spaces.)

Data and Loss. Given data D = {(x(n), y(n)) : n = 1, ...,N} and a set of
functions F our goal is to selcted a function f̂ ∈ F that approxi-
mates f . Often the set F will be parameterized with a function fθ
for each parameter θ ∈ Rp. We use a real-valued loss function (or
error function) L(y, f̂ (x)) to judge the error between an output y from
an estimate from an input f̂ . A cannoical choice is a quadratic loss
function

L(y, f (x)) = (y − f (x))2 ,

but other choices can be used. Because we are provided with both
input and output data, this setting is called supervised learning.

Goal. Given that the data D is drawn IID with distribution equal to
random variables (x̂, ŷ), our ultimate goal is to solve the optimization

min
g∈F
E

[
L(ŷ, g(x̂))

]
for a set F that has a lowminimum expected loss. However, we don’t
know the distribution of (x̂, ŷ). So we can only get an approximate
solution of this from the available data D and we must determine
what set of functions F makes efficient use of this finite set of data.
What follows is an overview of standard approaches to this problem.

5.2 Linear Regression
Using data (x(n), y(n)), n = 1, ...,N, you want to approximate a real-
valued output variable y from a p-dimensional input vector x. We
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approximate y by a linear function of x, namely,

θ>x = θ0 + θ1x1 + ... + θKxK .

Here x = (1, x1, ..., xp). We choose the θ that gives the least square
distance between y and θ>x for each data point:

minimize
N∑

n=1

(
y(n)
− θ>x(n)

)2
over θ ∈ Rp+1 .

Optimal Weights. A short calculation gives that this minimization
is solved by

θ̂ = (X>X)−1X>y

where we define the p × p matrix X, by Xi j =
∑

n x(n)
i x(n)

j and we define
y = (y(1), ..., y(N))>. Using a singular value decomposition the com-
plexity of finding θ̂ is O(Np2).

Optimizing with big N. The inverse, (X>X)−1 can involve too much
calculation when N or p is big. An alternative is to do Stochastic
Gradient Descent:

θ ← θ − α
(
y(n)
− θ>x(n)

)
x(n) .

So we move θ in the direction of x(n), one data point at a time. So
we don’t need to wait for our full calculation to get an estimate for θ.
We could also apply asynchronous updates, so we can parallelize is
the number of parameters p get big too.

Basis functions. Linear regression does not need y to be approxi-
mated by linear function of x, nor does x need to be finite dimen-
sional, but we do need a linear relationship with respect to θ.

Suppose for each x we take p different features using the basis
functions φ j(x), j = 1, ..., p. We can then perform linear regression on

θ>φ = θ0 + θ1φ1(x) + ... + θpφp(x) .

The least squares distance is given by

θ̂ = (Φ>Φ)−1Φ>y

where we define the p × p matrix Φ, by Φi j =
∑

n φi(x(n))φ j(x(n)).
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Polynomial Regression. A good example is polynomial regression.
Here we can model y as a polynomial function of x, with the basis
functions φ0(x) = 1, φ1(x) = x, φ2(x) = x2, ..., φp(x) = xp.

Regularization. Often it is important to reduce the complexity of a
model. (We will discuss why youmight want to do this in more detail
in the next section.) For linear regression, this can be achieved by
penalizing large values of θ as follows:

minimize
N∑

n=1

(
y(n)
− θ>x(n)

)2
+ λ||θ||22︸︷︷︸

penalty term

over θ ∈ Rp+1 .

where ||θ||22 =
∑

j θ
2
j is the L2 norm. This is know as ridge regression

or L2-regularization.1 We could use the L1 norm

||θ||1 =
∑

j

|θ j|.

This would be called Lasso or, when applied to other models, L1-
regularization. Notice the contours of the L1 norm are diamonds
(rather than circles for the L2 norm) so since optimal solutions tend
to end up on the corners of these diamonds, we are more likely to
end up setting some variables to be zero. In this way Lasso controls
the number of variables used in a statistical model.

Regularization and Optimization. When L2 regularization is ap-
plied to linear regression this optimal solution now satisfies

θ̂ = (X>X + λI)−1X>y

Notice before we could not guarantee that the inverse (X>X)−1 ex-
isted but with regularization the inverse is always defined. It has a
positive effect on numerical stability.

Notice when applying stochastic gradient descent we have

θ ← (1 − αλ)θ − α
(
y(n)
− θ>x(n)

)
x(n) .

Essentially the (1−αλ) term means we apply a dampening effect on
the stochastic gradient descent update.

1We use ridge regression when applied to linear regression, where L2 regular-
ization is the idea of applying a penalty like this to any regression model.
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Notice we do not explicitly limit the range of values of θ though
we know (from Lagrangian optimization) that adding a penalty such
as λ is equivalent to adding a constraint. So essentially we solve the
optimization

minimize
N∑

n=1

(
y(n)
− θ>x(n)

)2

subject to ||θ||22 ≤ κ

over θ ∈ Rp+1 .

In this way we can think of regularization as reducing the complex-
ity of our model. As the number of models that we are considering
if reduced.

5.3 Training, Development and Test sets
Using training, development and test sets and evaluating their error
is one of the most practical ways to get the most out of a machine
learning algorithm.

We want to understand how much loss/error removed in from
our predictions as the amount of data gets larger. The empirical
loss over a data set D is given by

ÊD[L(ŷ, f (x̂))] :=
1
|D|

∑
(x,y)∈D

L(y, x) .

Here the expectation is taken over the empirical distribution of the
data P̂D. Specifically we calculate mean loss over the data.

Given you have a finite set of data, if it is often worth separating
your data D = {(x(n), y(n)) : n = 1, ...N} into a training set, Dtrain, a
development (dev) set Ddev and a test set, Dtrain . The training set is
the data that you give to your regression algorithm to fit with. The
dev set you use to evaluate and move around other parameters,
such as the number of features p or the learning rate α (and in
general the size and parameters of your model). While the test set
is a data that keep for later to evaluate your regression fit, once you
have fit your regression model with all of your parameters fixed.
Thus the test set is completely fresh data; it is not seen by your
regression algorithm and you should not use it for choosing model
parameters.
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This is because you may want to test the level of performance of
your regression fit. (In general, it is not good to use data used to fit
the regression model as the regression parameters depend on this
data. In order to get an unbiased evaluation of your regression fit,
it is good to hold some data back for this.)

The development set is sometimes called the validation set. In a
reinforcement learning setting using simulation, i.e. where you do
not have a finite set of data and it is inexpensive to get new data,
you can alway simulate new data for training, developing, testing.

Figure 5.1: Traing Error (red) and Test Error (green) approach the
Asymptotic Error as Data increases.

Here you fit your regression model with the training set, but don’t
use data from the test set. You can then evaluate the training and
test error:

Training Error = ÊDtrain[L(ŷ, f (x̂))]

Dev Error = ÊDdev[L(ŷ, f (x̂))]

Test Error = ÊDtrain[L(ŷ, f (x̂))]
Asymptotic Error = min

θ
E

[
L(ŷ, f (x̂))

]
Further we might have some desired level of performance. We refer
to this as the target error.

The asymptotic error assumes that the data in Dtest and Dtrain
are IID samples of a random variable (x̂, ŷ) with expectation E . Un-
der this assumption, the asymptotic error is the best fit we can get
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for that regression model.

Which Error is bigger? Notice we expect training error to be lower
than the test and asymptotic area, since a good regression will at-
tempt to minimize the loss of the data that is has seen (while it can’t
do as much with data that it has not seen). The test error should
be higher than the asymptotic error, because the distribution E is
more representative of the training data than the test data. So we
have

Training Error < Asymptotic Error < Test Error
Overfitting. We can think of the difference between the test error
and asymptotic error, as the amount of additional error we intro-
duce by having a finite data set. We could refer to the as the amount
that we have overfit the data:

overfit = Asymptotic Error − Training Error

When this problem becomes chronic this could be referred to as
overfitting (our model is optimizing the individual data points rather
than optimizing the underlying distribution of the data). We do not
usually have access to the distribution generating the data, so we
cannot evaluate the amount of overfit. Instead we have to diagnose
this symptomatically with other metrics such as the difference be-
tween the test and training error, sometimes referred to as the gen-
eralization error:

Generalization Error = Test Error − Training Error

What size should Dtrain and Dtest be? There is no fixed rule and
plenty more could be said here, but a common rule of thumb is to
have 80% of data in your training set and 20% in your test set. Notice
if we are working with simulated data that is easy to compute then
we are less constrained proportioning to our training set.

Error as N increases. See Figure 5.1. In general the training error
increases as the amount of data, N, increases. This because our
fix set of parameters have more points to fit. The test error goes
down, as more the data used for train is more representative of the
true distribution of (x̂, ŷ). Both should tend towards the asymptotic
error.

Here we assume θ is the (optimal) least square fit for the data.
However, if we used stochastic gradient descent, then we would not
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have the optimal parameters for the data so the the relationship be-
tween test and training error is less clear cut. Generally the train-
ing and test error will decrease. If training error decreasing and
test error increase this is a symptom of overfitting (to be discussed
shortly).

Error as p increases. If we let the number of parameters of our
regression model get big, then it is more expressive. Eg. We can fit
more function to a degree 20 polynomial and a degree 2 polynomial.
So we expect the asymptotic error to decrease as we let p get bigger.
A good thing right? Well, no, not always. A degree 20 polynomial
will wiggle around more and thus might not express the underly-
ing structure of the distribution generating the data. See the two
figures below.

Figure 5.2: A Simple Model Figure 5.3: A Complex Model

5.4 Bias and Variance.
Consider a statistical learning problem, y = f (x) + ε. We are in-
terested in how well on average our trained regression model ap-
proximates underlying model, this is called the Bias. And we are
interested how much a fitted model is just learning the inherent
variability in the data (rather than the underlying model), this is
called the Variance. For a quadratic loss function, we can give a
conceptually nice decomposition for these terms.
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Bias-Variance Decomposition. Suppose as a function of data D,
we choose an estimate f̂ ∈ F . We let f̄ be the expected value of f̂ ,

f̄ (x) = ED[ f̂ (x)] .

Here the expectation is over a random sample of data D. The bias
and variance of f̂ at x are given by

biasx( f̂ ) =
(

f̄ (x) − f (x)
)2

varx( f̂ ) = ED

[(
f̂ (x) − f̄ (x)

)2
]
.

We can also take an expectation over the distribution of x̂ to get the
bias and variance of f̂ . I.e.

bias( f̂ ) = Ex̂

[ (
f̄ (x̂) − f (x̂)

)2 ]
, var( f̂ ) = ED,x̂

[(
f̂ (x̂) − f̄ (x̂)

)2
]
.

I.e. in the expectation above, we fit the dataD and then sample one
more point x̂ so see how well the fit does.

The bias gives how close the estimator’s mean value f̄ is to the
true value f . The variance of the estimator f̂ gives how spread out
the estimator is against its mean.

The following lemma shows that the mean of the quadratic loss
is the sum of the bias and variance (plus some irreducible random-
ness).

Lemma 12 (Bias-Variance Decomposition).

E(x̂,ŷ),D

[(
ŷ − f̂ (x̂)

)2
]

= bias( f̂ ) + var( f̂ ) + var(ε).

Proof. Since ŷ = f (x̂) + ε, we can expand as follows

E
[(

ŷ − f̂
)2
]

=E
[(
ε + f − f̄ + f̄ − f̂

)2
]

= E[ε2]︸︷︷︸
var(ε)

+ 2E[ε]E[( f − f̄ + f̄ − f̂ )]︸                        ︷︷                        ︸
=0, independence and E[ε]=0

+
(

f − f̄
)2︸   ︷︷   ︸

biasx( f̂ )

+2
(

f − f̄
)
E

[(
f̄ − f̂

)]
︸       ︷︷       ︸

=0

+E
[(

f̄ − f̂
)2
]
.︸          ︷︷          ︸

varx( f̂ )

=bias( f̂ ) + var( f̂ ) + var(ε) .

�
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Bias-Variance Tradeoff. We now consider this situation where the
amount of data is fixed and we fit a series of models of varying
complexity. Here consider adding an axis for model complexity to
Figures 5.2 and 5.3 and take a cross section where the amount of
data is fixed. We get a picture like Figure 5.4.

Figure 5.4: Training and test error for fixed amount of data.

We see that when we fit a simple model, we are prone to have
high dev and training error which are close together. I.e. High bias
and low variance. If we have a complex model, then we have low
training error, but high dev error. I.e. low bias but high variance.
In the middle, we see there seems to be a sweet spot. This is a better
predictive model for this amount of data.

Notice here we use the Dev set as we using it to decide which
parameters to use. We use the test set at the end to double check
that the fit is good and agrees with the errors given by the dev set.

Informal use. The bias variance decomposition is proven for a
quadratic function. That said we can draw learning curves like
Figure 5.1 and Figure 5.4 for any loss function. Thus often peo-
ple refer to bias and variance more informally often in reference to
some desired error that you wish to target. High bias meaning that
your training error is far from your target error, and high variance
meaning your test/dev error is far from your training error. (Note
that bias and variance here are conflated with asymptotic error and
generalization error from earlier.2)

2These ambiguities appear to be from an attempt to shoehorn the quick and
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Target Train Dev Diagnosis Remedy
Error Error Error

A. 1% 15% 16% High increase model
bias complexity

with bigger model
B. 1% 0.9% 30% High Get more data

variance if not:
decrease complexity
with regularization.

C. 1% 15% 30% High bias 1st. More data
& variance 2nd. Bigger model

3rd. new model.
D. 1% 0.9% 1.1% low bias stop done.

& variance

Table 5.1: Table of error symptoms, diagnosis and remdey for learn-
ing problems.

Diagnostics. We with stick with the informal terminology from
above. We can use these to form some diagnostics, remedies and a
procedure for getting a good model. (Here we are assuming that it is
relatively straight forward to generate new data and issues such as
convergence to an optimal fit have been resolved.) Below is a table
with some scenarios.

• High bias, low variance: we have fitted a model. Variance be-
tween test and training is low, so we have a good fit, but high
bias suggests the model is not expressive enough to represent
the data. Suggestion is to add more data.

• Low bias, high variance: the test error is low but the training
error is high. This is a sign the model is expressive enough to
fit to the data (maybe too expressive), adding more data will
bring down the variance (and potential up the bias). If there
is no more data, increasing regularization parameter is a good
alternative.

conceptually easy Bias-Variance calculation into the the more deep and general,
but conceptually harder, theory of statistical learning from Vapnik and Chervo-
nenkis – this is out of scope for us for now.
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• High bias, high variance: a bad outcome, basically the model
has not been fitted yet so you should get more data. This
should reduce variance. If this still does not work you could
regularlize to reduce bias. If this does not work you should
consider a new model to get low bias.

• Low bias and low variance: suggest you have a good working
model.

Figure, gives a flow diagram where you go from high bias to low
bias with high variance to a working model. The right handside
discussed remedies for high bias and variance.

Figure 5.5: Flow chart for getting a working machine learning
model.
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5.5 Neural Networks
A neural network (or artificial neural network) is a generalization
of regression. A neural network consists of connecting together a
number of artificial neurons.

Neuron. A neuron considers of a number of input parameters x =
(1, x1, ..., xp) a weight w is applied to each of these and then this is
applied to a function to give our prediction:

ŷ = f (w>x)

The function f (z) is often called an activation function. This is rep-
resented in Figure 5.6

Figure 5.6: A Neuron in a Neural network.

Since the amount of data used is typically quite large, neural net-
works are trained using stochastic gradient descent (and a number
of other specialized variants). For this we need to differentiate. We
can differentiate this as follows:

∂ȳ
∂w j

= x j f ′(w>x) .

Slight more involved calculations will be used when we consider
networks of neurons. But first let’s quickly consider choices for the
activation function f (x).

Activation Functions. There are various choices of activation func-
tions f . Some common choices are given in Table 5.2

The table shows three rough categories: Binary, linear and max.
Each serves a slightly different purpose. Binary helps for yes/no
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Name Formula, f (z)

Binary

0, for z < 0
1, for z ≥ 0 .

Logistic 1
1+e−z

Tanh ez
−e−z

ez+e−z

Linear z

ReLU

0, for z < 0
z, for z ≥ 0 .

Softplus log(1 + ex)

Max maxi zi

Softmax ezi∑
j ezj

Table 5.2: List of some activation functions.
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decisions. Linear (and particularly ReLU) is good for gauging the
intensity of an activation (above a certain level). Max determine the
most likely variable. The activations have differentiable analogues
in each category. E.g. the logistic function is differentiable, unlike
the binary function. This allows us to apply stochastic gradient
descent.

Notice, max (and softmax) neurons are not applied to weighted
sums of inputs, like

∑
i wixi. They are directly applied to each input

xi. For this reason they are usually only used in the final layers of
a deep neural network.

A Two Layer Network. We now discuss combining neurons to-
gether to make a neural network. Traditionally, a neural network
would have consisted of a set of inputs, a single layer of neurons
and an output layer. See Figure 5.7 for an instance of a two-layer
neural network.

Figure 5.7: A two-layer neural network. Here squares give inputs
and circles are neurons.

Here the inputs are each given to different intermediate neurons.
The output from each intermediate neuron is then fed into an out-
put neuron that then gives a prediction. I.e. Given inputs x and
weights w our prediction ŷ is

ŷ = f (2)(z(2)) where z(2) =

l∑
j=1

a(1)
j w(2)

j ,

and
a(1)

j = f (1)
j (z(1)

j ) where z(1)
j =

∑
k

w(1)
jk xk
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Here f (k) and w(k) are the activation functions and weights applied
at the k-th layer. From a theoretical perspective, if l is chosen suffi-
ciently large then appropriate weights can be chosen to any contin-
uous function bounded function with arbitrary precision. However,
in practice (and maybe in theory too), it is likely some structures
work get a closer approximation with less parameters.

Deep Neural Networks. Due to success in many practical applica-
tions. People often consider neural networks with multiple layers,
l = 1, ..., l′. (Meaning, roughly, between 3 and 300 layers). Here a
layer, l, is a set of activation functions f (l)

i , i = 1, ...,nl, and each acti-
vation receives, as input, the output from the previous layer. These
are called Deep Neural Networks. See Figure 5.8.

Figure 5.8: A deep neural network.

As each layer is fed a weighted linear combination of the activa-
tion output from a previous layer we have:

a(l)
j = f (l)

j (z(l)
j ) where z(l)

j =
∑

i

a(l−1)
i w(l)

i j

starting initially with the inputs, a(0)
i = xi. (Implicitly we assume one

of the activations is set equal to 1, so that we can have a constant
input). Notice here really what we are doing is repeatedly composing
linear combinations of functions. Notice we do not have any loops
in our networks, i.e. we always work with directed acyclic graphs
(aka. DAGs).

Backpropagation. To train a deep neural network we need to be
able to optimize our weights. To do this different variants of stochas-
tic gradient descent are applied. To apply (stochastic) gradient de-
scent we need gradients. Essentially since a neural network is a

160



5.5. NEURAL NETWORKS NSW

composition of functions we apply the chain rule from calculus. A
conceptually useful way to organize these chain rule calculation for
a neural network is Backpropagation, which we now define.

Suppose we are given data piece of data (x, y) i.e. an input vector
x and an output number y. We can get a prediction ȳ from x by
recursively applying our above formula:

a(l)
j = f (l)

j

(∑
i

a(l−1)
i w(l)

i j

)
. (5.1)

starting initially with the inputs, a(0)
i = xi and ending up with a pre-

diction ȳ = a(l′) where l′ is the final output layer of our neural net-
work. We can then evaluate the loss between our prediction and
the observed outcome:

L(y, ȳ) .

We need optimize the weights of our deep neural network. Rather
than recursively applying forward the formula (5.1), we must apply
backward a related formula. Hence this takes its name as "back-
propagation". For this, let’s define

z(l)
j :=

∑
i

a(l−1)
i w(l)

i j and δ(l)
j :=

∂L

∂z(l)
j

.

Note that a(l)
j = f (l)

j (z(l)
j ) and using notation ȧ(l)

j =
d f (l)

j

dz(l)
j

, we have that

∂z(l+1)
k

∂z(l)
j

= ȧ(l)
j w(l+1)

jk .

I.e. we can calculate partial derivatives for layer l+1 from derivatives
of the activations functions at layer l, and notice if we have the
partial derivatives with respect to z(l)

j it is easier to calculate the
other quantities that we want. Specifically,

∂L

∂w(l)
i j

=
∂z(l)

j

∂w(l)
i j

∂L

∂z(l)
j

= a(l−1)
i δ(l)

j .

Nowwe can apply to the chain rule to get the derivatives with respect
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to z(l)
j :

δ(l)
j =

∑
k

∂z(l+1)
k

∂z(l)
j

∂L

∂z(l+1)
k

=
∑

k

ȧ(l)
j w(l+1)

jk δ(l+1)
k (5.2)

Notice once we have obtained the values of each z(l)
j in our forward

pass using (5.1) , we can the work backwards using (5.2) from the
final layer to the first to calculate each δ(l)

j .
The interactions between these formulas in Backpropagation can

be summarized in Figure 5.9. The key terms and formulas in back-
propagation are summarized in Table 5.3, below.

Figure 5.9: Forward and backward pass of Backpropagation.

References
Everything on statistical learning, linear regression, bias-variance
and neural networks is by now very standard machine learning.
See Friedman et al. [15], Murphy [30] or Goodfellow [17].
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Backpropagation
Definitions Formulas

z(l)
j :=

∑
i a(l−1)

i w(l)
i j a(l)

j = f (l)
j (z j) (forward pass)

a(0)
j := x̂ j δ(l)

j =
∑

k ȧ(l)
j w(l+1)

jk δ(l+1)
k (backward pass)

δ(l)
j := ∂L

∂z(l)
j

∂L
∂w(l)

i j

= a(l−1)
i δ(l)

j .

Table 5.3: Backpropagation Definitions.
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Chapter 6

Reinforcement Learning with
Function Approximation
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6.1 Linear Approximation and TD Learning
First we give the high level idea behind linear function approxima-
tion. Then we give a somewhat informal analysis of TD(0).

For a Markov chain x̂ = (x̂t : t ∈ Z+), consider the reward function

R(x) := Ex

 ∞∑
t=0

r(x̂t)

 (6.1)

associated with rewards given by r = (r(x) : x ∈ X). We approximate
the reward function R(x) with a linear approximation,

R(x;w) = w>φ(x) =
∑
j∈J

w jφ j(x).

Here we have taken our state x and extracted features, φ j(x) for j
in finite set J, that we believe to be important to determining the
overall reward function R(x). Interpreting each φ j = (φ j(x) : x ∈ X) as
a vector, we assume {φ j : j ∈ J} are linearly independent. We then
apply a vector of weights w = (w j : j ∈ J) to each of these features.
Our job is to find weights that give a good approximation to R(x).

We know for instance that R(x) is a solution to the fixed point
equation

R(x) = Ex[r(x) + βR(x̂)︸        ︷︷        ︸
=:Target(x)

], x ∈ X. (6.2)

The target, Target(x), is an estimate of the true value of R(x;w) Here
the target random variable considered is the TD(0) target. Other
targets can be used, e.g. the term in the sum, (6.1), would be the
Monte-carlo target, and there are various options in between, c.f.
TD(λ).

In function approximation, we cannot get the expected reward to
equal its target. So we attempt to minimize the difference between
them. For example

minimize
w

Eµ
[
(Target(x) − R(x;w))2

]
.

Here the expectation is over µ = (µ(x) : x ∈ X), the stationary dis-
tribution of our Markov process. We can’t minimize this since we
do not know the stationary distribution µ. We can only get samples
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and so we can instead apply Robbin’s-Munro/Stochastic Gradient
Descent update to w

w ← w + α
(
Target(x) − R(x;w)

)
∇wR(x;w) .

Just like with tabular methods these updates can be applied online,
offline, first-visit, every-visit.

Analysis of TD(0).
Let’s do an informal analysis of TD(0).

Linear TD(0) Algorithm. For TD(0) our target is r(x)+βR(x̂;w), where
x̂ is the next state after x. Under a linear function approximation
this gives an update

w ← w + α
(
r(x) + βw>φ(x̂) −w>φ(x)

)
φ(x) .

we let
g(x;w) :=

(
r(x) + βw>φ(x̂) −w>φ(x)

)
φ(x) .

Convergence Result. We argue (informally) that, for this iteration
scheme, w(t)→ w∗ where the limit function Φw∗ is in a factor of the
best approximation

||R −R(w∗)||µ ≤
1

1 − β
||R −Π(R)||µ .

Here we interpret R and R(w∗) as vectors R = (R(x) : x ∈ X) and
R(w) = (R(x;w) : x ∈ X). Also, we define the norm above by

||R||2µ =
∑
x∈X

µ(x)R(x)2 .

Average Behaviour. Suppose that our Markov chain x̂ is stationary
with stationary distribution µ(x). If we look at the expected change
in our update term we get

Eµ[g(x;w)]

=
∑

x

µ(x)r(x)φ(x) +
∑

x

∑
y

µ(x)(βφ(x)Pxyφ(y)> − φ(x)φ(x)>)w

= Φ>Mr −Φ>M[I − βP]Φw . (6.3)
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Above Φ is the X × J matrix with entries Φxj = φ j(x) and M is the
X × X diagonal matrix with diagonal entries given by µ(x) . We use
these to define the length J vector b and the J × J matrix A, as
defined follows:

A := Φ>M[I − βP]Φ and b := Φ>Mr .

Differential Equation Analysis. So, roughly, w moves according
to the differential equation

dw
dt

= −Aw + b .

Now P is the transition matrix of a Markov chain. Since its rows
sum to 1, its biggest eigenvalue is 1. So we can expect that −(I −
βP) is in some sense "negative", specifically it can be shown that
(Φw)>M(I − βP)Φw < −(1 − β)||Φw||2µ. This then implies that

v>Av ≥ (1 − β)||Φv||2µ.

This is proven in Lemma 4 below.
This is sufficient to give convergence of the above differential

equation: take w∗ such that Aw∗ = b and take L(w) = 1
2 ||Φw − Φw∗||2

then

dL
dt

= ∇L(w) ·
dw
dt

= −(w −w∗)>A(w −w∗) ≤ −(1 − β)||Φw −Φw∗||2µ.

Thus we see that R(w(t)) = Φw(t) → Φw∗ = R(w∗), and since we
assume φ j are linearly independent w(t)→ w∗.

Approximation Error. Convergence is great and everything, but
we must verify that the solution obtained, w∗, is a “good” solution.
First, notice that the reward function R = (R(x) : x ∈ X) satisfies

R = T0(R), where T0(R) := r + βPR .

This is just (6.2) with R interpreted as a vector and the expectation
as a matrix operation with respect to transition matrix P.

Second, notice the approximation R(w) = (R(x;w) : x ∈ X) that is
closest to the rewards R, is given by a projection, specifically

Π(R) := Φ(Φ>MΦ)−1Φ>MR = argmin
R(w)

||R −R(w)||2µ .
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Third, we see the equations satisfied by w∗ can be expressed in a
form somewhat similar to above expression R = T0(R). Specifically,
we rearrange the expression Aw∗ = b

Aw∗ = b ⇐⇒ Φ>M[I − βP]Φw∗ = Φ>Mr
⇐⇒ Φ>MΦw∗ = Φ>Mr + Φ>MβPΦw∗

⇐⇒ Φw∗︸︷︷︸
R(w∗)

= Φ[Φ>MΦ]−1Φ>M︸                ︷︷                ︸
Π

(r + βPΦw∗)︸         ︷︷         ︸
T0(R∗(w))

.

So, while R satisfies R = T0(R), we see that R(w∗) satisfies

R(w∗) = Π(T0(R(w∗)) .

We can use these identities satisfied by R and R(w∗) to show that
approximation is comparable to the best approximation of R. Since
T0 is a β-contraction and that projections always move distances
closer (both properties are relatively easy to verify, see Lemma 4):

||R −R(w∗)||µ ≤ ||R −Π(R)||µ + ||Π(T0(R)) −Π(T0(R(w∗))||µ
≤ ||R −Π(R)||µ + β||R −R(w∗)||µ .

So
||R −R(w∗)||µ ≤

1
1 − β

||R −Π(R)||µ .

Some Formal Analysis. Here are a few formal results that we men-
tion in the discussion above.

Proposition 4. Wedefine ||R||µ =
∑

x µ(x)R(x)2 and ‖P‖µ = sup f ‖P f ‖µ/‖ f ‖µ
a) ||P||µ ≤ 1.
b) The TD(0) map is a contraction that is if for function R : X → X we
let, TR(x) = r(x) + βPR(x) then

‖TR1 − TR2‖µ 6 β ‖R1 −R2‖µ

and
‖ΠTR1 −ΠTR2‖µ 6 β ‖R1 −R2‖µ

where Π is a projection in || · ||µ.
c)

(w − w∗)>Eµ[g(x; w)] ≤ −(1 − β) ‖Φw −Φw∗‖2µ .
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Proof. a) Using Jensen’s Inequality below,

||P f ||2µ =
∑

x

µ(x)
(∑

y

Pxy f (y)
)2
≤

∑
x

µ(x)
∑

y

Pxy f (y)2

=
∑

y

f (y)2
∑

x

µ(x)Pxy︸       ︷︷       ︸
=µ(y)

=
∑

y

µ(y) f (y)2 = || f ||2µ .

In the curly brace, we are using that µ is a stationary distribution.
b)

‖TR1 − TR2‖µ = β ‖P (R1 −R2)‖µ 6 β‖P‖µ ‖R1 −R2‖µ

Since, ||P||µ ≤ 1, the result holds. Further since projections reduce
distances ||ΠR||µ ≤ ||R||µ the 2nd inequality holds too.
c) From the above calculation in (6.3), we have that

Eµ[g(x;w)] = ΦTM[r + βP − I]Φw
= Φ>M [T(Φw) −Φw]
= Φ>M[(I −Π) + Π] [T (Φw) −Φw]
= Φ>M [ΠT(Φw) −Φw] .

In the third, equality we use that Φ>(I −Π) = 0 which holds since Π
is a projection in || · ||µ onto the space spanned by Φ and thus (I−Π)
is orthogonal to this space.

Now applying the above inequality

(w −w∗)>Eµ[g(x;w)]

= (Φw −Φw∗)>M [ΠT(Φw) −Φw]

= (Φw −Φw∗)>M [ΠT(Φw) −ΠT (Φw∗) + Φw∗ −Φw]

= − ‖Φw −Φw∗‖2µ + (Φw −Φw∗)>M [ΠT(Φw) −ΠT (Φw∗)]

≤ − ‖Φw −Φw∗‖2µ + ‖Φw −Φw∗‖µ ‖ΠT (Φw) −ΠT (Φw∗)‖2µ
≤ − ‖Φw −Φw∗‖2µ + ‖Φw −Φw∗‖µ β ‖Φw −Φw∗‖µ

= −(1 − β) ‖Φw −Φw∗‖2µ

In the second equality above, we use that w∗ satisfied ΠT(Φw∗) =
Φw∗. The first inequality is the Cauchy-Schwartz inequality. The
second inequality, applies the contraction property from part b). �
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References
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6.2 Linear Approximation and Stopping
We consider an optimal stopping problem as introduced in Section
1.6, and we apply a linear function approximation scheme like in
Section 6.1.

It is not straight-forward to prove that the results of Section 6.1
can be extended reinforcement learning methods like Q-learning.
However, optimal stopping is an example where this is possible.
There are essentially two reasons why:

1. A stopping rule does not interact with the process being esti-
mated. I.e. Changing the stopping rule does not change the
underlying process, which is not true for other MDPs.

2. The Q function has a simple form, like Q = r+βmax{r̄,V}, which
remains a contraction. (For example, if r,r̄, β and V are real
numbers then a short calculation shows that |Q′−Q| ≤ β|V−V′|.)

This suggests that the analysis done for approximating rewards R
should pass over to optimal stopping problems.

Optimal Stopping Recap. We consider the problem of stopping to
maximize rewards rather than minimizing costs. We briefly recall
that we wish to stop a Markov chain x̂ = (x̂t : t ∈ Z+) with values
in state space X and transition probabilities given by the matrix
P = (Pxy : x, y ∈ X). Here r(x) is the reward for continuing at state x
and r̄(x) is the reward for stopping at state x. We consider the MDP

V(x) = max
τ
Ex

 τ−1∑
t=0

βtr(x̂t) + βτr̄(x̂τ)

 (6.4)

with discount factor β ∈ (0, 1). The above maximization is take over
all stopping times τ. The Bellman equation for this problem is

V(x) = max
{
r̄(x), r(x) + βEx[V(x̂)]

}
.

We view the left-hand expression as an operation on a vector. Specif-
ically, for R = (R(x) : x ∈ X), we let

TR(x) = max
{
r̄(x), r(x) + βEx[R(x̂)]

}
.

For the value function V, we define the optimal Q-factor by

Q(x) = r(x) + βEx[V(x)] .
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and we define the operation S on the Q-function vector Q′ = (Q′(x) :
x ∈ X) by

SQ′(x) = r(x) + βEx [max {r̄(x̂),Q′(x̂)}] .

The value function V in (6.4) is the unique solution to the Bell-
man equation and moreover an optimal rule is found by letting τ∗ =
min{t : r̄(xt) ≥ V(xt)}.Note by the definitions above V(x) = max{r̄(x),Q(x)},
see Section 1.6 and Theorem 31 in Section 1.4. So equivalently we
can see that

τ∗ = min{t : r̄(xt) ≥ Q(xt)}

gives the optimal stopping time.
Throughout this section we assume that the Markov chain x̂ =

(x̂t : t ∈ Z+) is positive recurrent with stationary distribution µ =
(µ(x) : x ∈ X).

Function approximation. We approximate the Q-function Q(x)
with a linear approximation,

Q(x;w) = [Φw]x = w>φ(x) =
∑
j∈J

w jφ j(x).

Here, like before, we have taken our state x and extract linearly in-
dependent features, φ j = (φ j(x) : x ∈ X) for j in finite set J. These
features should be important in determining the function Q(x). We
then apply a vector of weights w = (w j : j ∈ J) to each of these
features. Our job is to find weights so that Q(x;w) gives a good
approximation to Q(x). We can intepret the Q-function and approx-
imation as vectors with components in X given by Q = (Q(x) : x ∈ X)
and Qw = Φw where Φ is a matrix whose x-th column is given by
φ(x) = (φ j(x) : j ∈ J). We we can use this to define a stopping policy
given by

τ(w) = min {t : r̄(x) ≥ Q(x;w∗)} .

Since τ(w) does not necessarily induce the sameQ-function as Q(x;w∗).
We will later consider the operation

SwQ(x) := r(x) + βEx[r(x̂)I[r(x) ≥ Φw(x)] + Q(x)I[r(x) < Φw(x)]]

Think of Sw being the value of following stopping rule τ(w) on the
next step and there afterward following Q. If is immediate that

SwΦw = SΦw
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As before it is useful to consider the projection onto the space
spanned by the basis functions Φ, namely,

Π(Q) := Φ(Φ>MΦ)−1Φ>MQ = argmin
Qw

||Q −Qw||
2
µ (6.5)

where as before ||Q||2µ =
∑

x∈X µ(x)Q(x)2 and M is the diagonal ma-
trix with diagonal entries given by µ(x) for x ∈ X.
Approximation Algorithm. An approximation algorithm is given
by the update

wt+1 = wt + αtφ(xt)
(
r(xt) + βmax{Q(xt+1;wt), r̄(xt+1)} −Q(xt;wt)

)
(6.6)

here αt is a step size parameter. Notice this is similar the TD(0)
update given in Section 6.1.

If we let

g(w) = φ(xt)
(
r(xt) + βmax{Q(xt+1;wt), r̄(xt+1)} −Q(xt;wt)

)
Then the update (6.6) is simply, wt+1 = wt + αtg(wt).

Average Behavior. If we look at the expected change in g(w) given
xt = x, we get that

Ex[g(w)] = φ(x)

r(x) + β
∑

y

Pxy max
{
φ(y)>w, r̄(y)

}
− φ(x)>w


= φ(x) (SQw(x) −Qw(x))

If we look at the average change this induces under stationary dis-
tribution µ(x) we get

Eµ[g(w)] =
∑

x

φ(x)µ(x) (SQw(x) −Qw(x))

= Φ>MSΦw −Φ>MΦw (6.7)

where we use the definition that Qw = Φw. So the change in the
algorithm is stationary when

0 = Eµ [g (w∗)] = Φ>MSΦw∗ −Φ>MΦw∗

Rearranging and applying Φ to both sides gives

Φw∗ = Φ
(
Φ>MΦ

)−1
Φ>MSΦw∗

= ΠSΦw∗ .
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the last part follows by the definition of the projection Π (6.5).

Differential Equation Analysis. The analysis here is essentially
the same as the differential equation analysis in Section 6.1. Again
the change in w(t) is approximated by the ODE

dw(t)
dt

= −A(w(t))

where now

A(w(t)) = Eµ [g(w(t))] = Φ>M(I − S)Φ(w −w∗) .

Note that A is no longer a linear function in w(t). However, similar
to our analysis before – where we argued −(I − βP) was spectrally
negative because P is a 1-contraction in ||·||µ – we can argue that −(I−
S) is spectrally negative because S is a contraction. See Proposition
5a). Thus

dL
dt

= ∇L(w)
dw
dt
≤ −(w −w∗)>A(w −w∗).

This implied L(w(t))→ 0 and from this we can argue that w(t)→ w∗.

Approximation Error. If we let τ(w∗) be the stopping rule induced
by w∗ from the above convergence argument then we can argue that
its reward behaves similarly to projecting the optimal policy:

E [V (x0)] − E
[
Rτ(w∗) (x0)

]
6

2β
(1 − β)2 ‖ΠQ∗ −Q∗‖µ

The argument is similar to the TD(0) case, previously. However, as
discussed the argument is complecated by the fact the Q-factor for
τ(w) is not the same as Q(x;w). The full argument is proven more
formally in (5) below.
Some Formal Analysis. Here we present the main ingredients
applied in this section. (Excluding the differential equation argu-
ment.)

Proposition 5.
a) The maps S, ΠS and Sw are β-contractions with respect to the norm
|| · ||µ, that is

1. ‖SQ − SQ′‖µ 6 β ‖Q −Q′‖µ .

2. ‖ΠSQ −ΠSQ′‖µ 6 β ‖Q −Q′‖µ .
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3. ‖SwQ − SwQ′‖µ 6 β ‖Q −Q′‖µ .
b)

(w −w∗)Eµ[g(w)] < 0 ∀w , w∗

and
Eµ [g (w∗)] = 0

where w∗ solves the equation

Π(SΦw∗) = Φw∗

c)
E [V (x0)] − E

[
Rτ(w∗) (x0)

]
6

2β
(1 − β)2 ‖ΠQ∗ −Q∗‖µ

where here it is assumed that the expection is taken with respect to
the stationary distribution of x0, namely µ.
Proof. a) part 1 & 2) Since Π is a projection it is also a contraction.
So

‖ΠSQ −ΠSQ′‖µ 6 ‖SQ − SQ′‖µ .

So it remains to show that S is a contraction, which holds as follows.

||SQ − SQ′||µ ≤ β||P max {r̄,Q} − P max {r̄,Q′} ||µ
≤ β||max {r̄,Q} −max {r̄,Q′} ||µ
≤ β||Q −Q′||µ .

Here we use the fact that ||PR||µ ≤ ||R||µ which we showed in Propo-
sition 4 and a straight-forward calculation that shows that for real
numbers a, b, c we have |max {a, c} −max {b, c} | ≤ |a − b|.
a) part 3) Recall the definition of Sw. We let Fw be the future value
given by

FwQ(x) :=

r̄(x) if r̄(x) ≥ Φw(x),
Q(x) otherwise .

So SwQ = r + βFwQ. Now

||SwQ − SwQ′||µ = β||PFwQ − PFwQ′||µ ≤ β||FwQ − FwQ′||µ ≤ β||Q −Q′||µ

In the first inequality we use that ||P||µ ≤ 1, from Proposition 4, and
the final inequality holds because

||FwQ − FwQ′||2µ =
∑

x

µ(x) |Q(x) −Q′(x)|2 I[r̄(x) < Φw(x)]

≤

∑
x

µ(x) |Q(x) −Q′(x)|2 = ||Q −Q′||µ
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b) The following argument relies on the fact that ΠS is a contraction:

(w −w∗)Eµ[g(w)]
= (w −w∗)

[
Φ>MSΦw −Φ>MΦw

]
= (w −w∗) Φ>M[ΠSΦw −Φw]
= (w −w∗) Φ>M [ΠSΦ (w −w∗) −Φw + Φw∗]

= (Φw −Φw∗)>MΠS (Φw −Φw∗) − (Φw −Φw∗)>M (Φw −Φw∗)

6 ‖Φw −Φw∗‖µ ‖ΠSΦw −ΠSΦw∗‖µ − ‖Φw −Φw∗‖2µ

6 −(1 − β)‖Φw −Φw‖2µ

In the first equality, we apply (6.7). In the second equality, we apply
that Φ>M = Φ>M(Π + (I − Π)) = Φ>MΠ. (Note Π is a projection with
respect to µ onto the space spanned by Φ thus I−Π is orthogonal to
this space). The first inequality above applies the Cauchy-Schwartz
Inequality. The second inequality applies that ΠS is a contraction.
c)

βE [V (x0)] − βE
[
Vτ
w∗ (x0)

]
= E

[
r (x0) − βPV (x0)

]
− E

[
r (x0) − βPVτ

w∗ (x0)
]

=
∣∣∣E [

Q (x0) −Qτ
w∗ (x0)

]∣∣∣
≤ ||Q −Qτ

w||µ

The last inequality, above, applies Jensen’s Inequality. Thus

E [V (x0)] − E
[
Vτ
w∗ (x0)

]
6 β−1

∥∥∥Q −Qτ
w∗

∥∥∥
µ

(6.8)

Similar to the argument in Proposition 4 we have∥∥∥Q −Qτ
w∗

∥∥∥
µ

=
∥∥∥Q − S (Φw∗) + Sτ (Φw∗) −Qτ

w∗

∥∥∥
µ

6 ‖SQ − S (Φw∗)‖µ +
∥∥∥Sτ (Φw∗) − Sτ(Qτ

w∗)
∥∥∥
µ

6 β ‖Q −Φw∗‖µ + β
∥∥∥Φw∗ −Qτ

w∗

∥∥∥
µ

6 2β ‖Q −Φw∗‖µ + β
∥∥∥Q −Qτ

w∗

∥∥∥
µ

Here we use that S (Φw∗) = Φw∗ = Sτ (Φw∗) and the contraction prop-
erty for both S and Sτ.

Thus, rearranging the above gives,∥∥∥Q −Qτ
w∗

∥∥∥
µ
6

2β
1 − β

‖Q −Φw∗‖µ
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Applying (6.8) to this gives

E [V (x0)] − E
[
Vτ
w∗ (x0)

]
6

2
(1 − β)2 ‖Q − π(Q)‖µ .

�

References
This section is based on reading Tsitsiklis and Van Roy [42], but
also see Bertsekas and Tsitsiklis [6]. Further approaches to optimal
stopping are discussed in the book of Glasserman [16].
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6.3 Policy Gradients
While almost all of the approaches considered so far in these notes
focus on obtaining the value of each state and action in order to find
an optimal policy. There is a muchmore direct approach that can be
applied. Here we parameterize the set of policies and differentiate
the objective. We can then simply apply gradient ascent to this to
optimize.

The approach is appealing. However, from a theoretical perspec-
tive, it’s a thorny issue: we cannot always exclude local minima or
directly guarantee sufficient exploration. Only recently are there
results that give conditions for convergence. Further it is not clear
how data can be reused as is done in Q-learning. With that said,
the results that do exist are elegant and many of the most success-
ful methods in recent years make use of policy gradients.

Parameterized Policies. We let πθ(a|x) be the probability that we
choose action a in state x. Here θ parameterize the set of policies.
For example, a popular choice is the soft-max function:

πθ(a|x) =
eθ>φ(a|x)∑
a′ eθ

>φ(a′|x)

where like in our analysis of linear function approximation, θ(a|x)
act as basis functions. However, may other choices exists.

Note that the probability of states and actions x = (x0, ..., xT) and
a = (a0, ..., aT−1) is

πθ(xT,aT) :=
T−1∏
t=0

p(xt+1|xt, at)πθ(at|xt)

The expected reward under policy πθ is

R(θ) := Eπθ [Q(x̂, â)] =
∑
x,a

Q(x,a)πθ(x,a)

where

Q(x,a) :=
T−1∑
t=0

βtr(xt, at)

Differentiating the Reward Objective. We now cover a number
calctlations where we differentiate the reward objective over θ. These
are summarized by the following theorem.
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Theorem 10 (The Policy Gradient Theorem).

∇θR(θ) = Eπθ
[
Q(x,a)∇θ logπθ(x,a)

]
= Eπθ

T−1∑
t=0

βtQt logπθ(at|xt)


where Qt =

∑T−1
s=t β

s−tr(xs, as).

Proof. We can differentiate the reward

∇θR(θ) =
∑
x,a

Q(x,a)∇θπθ(x,a)

=
∑
x,a

{
Q(x,a)∇θ logπθ(x,a)

}
πθ(x,a)

= Eπθ
[
Q(x̂, â)∇θ logπθ(x̂, â)

]
. (6.9)

Thus we can apply stochastic gradient descent on the above objec-
tive by sampling

Q(x, a)∇θ logπθ(x,a) .

Further we note that we can simply the derivative above,

∇θ logπθ(x,a) = ∇θ

log
T−1∏
t=0

p(xt+1|xt, at) + log
T−1∏
t=0

πθ(at|xt)


=

T−1∑
t=0

∇θ logπθ(at|xt)

This calculation is important for reinforcement learning applications,
as we do not need to know p(x̂|x, a) to calculate the change in the
above likelihood function for our policy.

We will shortly use the following

E[∇θ logπθ(â|x)] =
∑

a

πθ(a|x)
∇θπ(a|a)
πθ(a|x)

= ∇θ

∑
a

π(a|x)

︸         ︷︷         ︸
=1

= 0 , (6.10)

and, consequently for s < t,

Eπθ
[
r(xs, as) logπθ(at|xt)

]
= Eπθ

[
r(xs, as)Eπθ

[
logπθ(at|xt)|xt

]]
= 0 (6.11)
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Finally, we note that we can rearrange the objective (6.9) to ac-
count for the contribution from each individual state and action
(xt, at):

Eπθ
[
Q(x, a)∇θ logπθ(x,a)

]
= Eπθ

( T−1∑
s=0

βsr(xs, as)
)( T−1∑

t=0

logπθ(at|xt)
)

=

T−1∑
t=0

T−1∑
s=0

βsEπθ
[
r(xs, as) logπθ(at|xt)

]
by (6.11)

=

T−1∑
t=0

T−1∑
s=t

βsEπθ
[
r(xs, as) logπθ(at|xt)

]
= Eπθ

T−1∑
t=0

βtQt logπθ(at|xt)


as required. �

Further for later use it is worth noting that in the above proof
we also proved the following Lemma.

Lemma 13.
E[∇θ logπθ(â|x)] = 0 .

Here the expectation is taken over â not x.
Now we can use our results to design algorithms.

REINFORCE. Given the Policy Gradient Theorem above the REIN-
FORCE algorithm performs the following per episode update

θ← θ + γQ̃∇θ logπθ(x,a)

or as a per-visit update update does

θ← θ + γQ̃t∇θ logπθ(at|xt)

where Q̃ =
∑T

s=0 β
sr(xs, as) and Q̃t =

∑T
s=t β

sr(xs, as).

REINFORCE with a Baseline. By Lemma 13, any function of x can
be added to the REINFORCE update and the mean of the update
will not change. I.e.

E[B(x)∇θ logπθ(â|x)] = 0 .
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So

∇θR(θ) = Eπθ

T−1∑
t=0

βt (Qt − B(xt)) logπθ(at|xt)


Although the mean stays the same the variance can be reduced if
we have a decent estimate of the mean of Q̃t. We can do this by
using a temporal difference function approximation for the mean
value of each state

w← w + α
(
r + βVw(x̂) − Vw(x)

)
∇wVw(x) (6.12a)

and we update the policy weights

θ← θ + α (Qt − Vw(xt))∇θ logπθ(â|x) (6.12b)

We implement these updates per step.

Actor-Critic. Notice when we apply the updates above (6.12) the
terms r + βVw(x̂) and Qt serve the same purpose: they are both es-
timates of the Q-function for (xt, at). So we could reduce variance
further by replacing Qt with r + βVw(x̂). This gives the following al-
gorithm

δ←
(
r + βVw(x̂) − Vw(x)

)
(6.13a)

w← w + αδ∇wVw(x) (6.13b)
θ← θ + αδ∇θ logπθ(â|x) (6.13c)

This algorithm is called an Actor-Critic algorithm. Here we within
of πθ as the "actor" that makes the decisions in the simulation. And
we think of Vw as the "critic" that evaluates the performance of the
actor.

Notice δ is the TD(0) error. However, any TD update could be
used. For example, in place of (6.13a), n-step TD would use:

δ← r1 + βr2 + ... + βnrn + βn+1Vw(x̂n+1) − Vw(x) . (6.13a′)
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Chapter 7

Reinforcement Learning with
Neural Networks
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7.1 Deep Q-Network (DQN)
Deep Q-Network (DQN) is a simple adaptation of Q-learning to neu-
ral networks. Recall that Q-learning performs the update

Q(x, a)← Q(x, a) + α
(
r + max

â
Q(x̂, â) −Q(x, a)

)
,

where the 4-tuple (x, a, r, x̂) consist of the current state, action, re-
ward and next state. When we apply function approximation (with
a neural network) to Q-factor, Qw(x, a) for weights w, we must apply
the appropriate gradient descent update:

w← w + α
(
r + max

â
Qw(x̂, â) −Qw(x, a)

)
∇wQ(x, a) .

Notice this is the natural extension of the TD(0) update under ??.
The application of this algorithm to reinforcement learning has ex-
isted for some time along with its use with Neural Networks. How-
ever, along with progress in deep neural networks there have been
adaptions to this basic scheme that improve stability and perfor-
mance for this basic algorithm. For DQN, these are the use of fixed
targets and experience replay.

Fixed Targets. The basic idea of fixed Q-targets is you fix the
weights w′ and then continue to update a copy of the weights w.
Specifically this leads to the update:

w← w + α
(
r + max

â
Qw′(x̂, â) −Qw(x, a)

)
∇wQ(x, a) .

After some period of time you reset w′ = w and then continue to
update w and stays w′ fixed at its new value until it is next reset.
It’s not a big change; notice the apostrophe now in the Q-factor that
we maximize. But it helps. Here are two reasons why.

1. Notice the above step corresponds to a stochastic gradient de-
scent step on the objective

E
[(

r + max
â

Qw′(x̂, â) −Qw(x, a)
)2]

Here, in the context of supervised learning, Qw(x, a) is the pre-
diction for the output given input (x, a) and r + maxâ Qw′(x̂, â) is
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the output. In supervised learning the output is fixed in distri-
bution given the input. If the parameter w′ was not fixed, but
was equal to w, then each step would alter the output at each
step some non-trivial way. By fixing Q-targets, we can treat
the reinforcement learning problem as a supervised learning
problem until the next reset of w′. This simplifies the problem
of fitting Qw(x, a) as standard supervised learning approaches
can be to get a good fit.

2. At the point w′ is updated, it holds that

Qw(x, a) ≈ r + max
â

Qw′(x̂, â) .

Thus when we update w′, we are in essence performing a policy
iteration update.

In summaary, fixing Q-targets separates out the problem into a su-
pervised learning task where we update w and a policy improvement
step where we update w′. In this regard it is a very neat idea.

Experience Replay. Experience replay is the idea that we store a
large number (several episodes worth) of (x, a, r, x̂) in memory and
then we sample from this memory, e.g. at random, and use this
to do a weight update. At every simulation step we add the newest
experience (x, a, r, x̂) to the replay memory and remove the oldest.

Q-learning which works off-line does not really mind what or-
der data is received. However, stochastic gradient descent tends to
work much better if there is not a high degree of correlation between
steps. Specifically if we send data (x̂t, at, rt, x̂t+1) in the same order
that it is received from the simulator, then updates might cause
the weights to wander off. (They will come back but essentially we
have added variance to an already noisy process.)

Additional Variations.

Prioritized Experience Replay. The idea here is to rank the 4-
tuples (x, a, r, x̂) in the replay memory. This is done by recording the
absolute value of the TD error of each (x, a, r, x̂) in memory and then
forming a ranking from highest to lowest. Recall the TD error is
given by

δ = r + βmax
â

Qw′(x̂, â) −Qw(x, a)
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There are two basic variants: first, you select the highest ranked
error in memory; second, you select n-th highest ranked according
to a probability:

Pn =
n−α∑M

m=1 m−α

Here is a parameter α = 0 corresponds to uniform sampling and
α = ∞ corresponds to highest ranked. In either case you need to
importance sample as we know that an unbiased gradient update
is the same as uniformly sampling. So the basic Q-learning step
becomes:

w← w + α
( 1
NPn

)β
δ∇wQ(x, a) .

The parameter β introduces bias, Note if β = 1 then this is the correct
importance sampling, however, it could be argued that earlier in
training you want to care more about the gradient updates for TDs
with large (and probably previously unseen) experience. So taking
β ≈ 0 initially and linearly increasing to β = 1 is recommended.
You can also throw caution to the wind and set β = 0, as training
with ultimately be most effected by large TD errors and by biasing
towards these you are attempting to deal with these errors as best
as possible.
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Appendix

A.1 Probability.
All results here can be found in Williams [47], except the Martingale
Central Limit Theorem. Here instead see Hall and Heyde [19] and,
for the Functional Martingale Central Limit Theorem, seeWhitt [45].

Probability Inequalities
Below, unless stated otherwise, An, n = 1, 2, .. are an events. X is a RV
with mean µ, variance σ and moment generating function MX(θ) :=
E[expθX]. Sn =

∑n
k=1 Xk, where Xk are IID instances of X.

P

 ∞⋃
n=1

An

 ≤ ∞∑
n=1

P(An) (Union bound)

P(X ≥ x) ≤
µ

x
for X ≥ 0 (Markov’s inequality)

P(|X − µ| ≥ x) ≤
σ2

x2 (Chebychev inequality)

P(X ≥ x) ≤ exp
{
−max

θ≥0

(
θx − log MX(θ)

)}
(Chernoff Bound.)

P(Sn ≥ x) ≤ exp
{
−

x2

2nc2

}
(Hoeffding’s Inequality)
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X > 0 =⇒ E[X] > 0 (Positivity)
f (E[X]) ≤ E[ f (X)] for f convex (Jensen’s Inequality)
||X||p ≤ ||X||q for p ≤ q (Minkowski’s Inequality)
E[XY] ≤ ||X||2||Y||2 (Cauchy-Schwartz)

E[XY] ≤ ||X||p||Y||q for
1
p

+
1
q

= 1 (Holder’s Inequality)

Probability Limits
Here we assume A1,A2, ... is a sequence of events.

P(An occurs infinitely often) = 0 if
∑

n

P(An) < ∞

(Borel Cantelli Lemma)

P(An occurs infinitely often) = 1 if
∑

n

P(An) = ∞

and An, n ∈N, are independent
(2nd Borel Cantelli Lemma)

Here we assume that X1,X2, ... is a sequence of random variables
(possibly not independent)

E[Xn]↗ E[X∞], for Xn ≤ Xn+1 .

(Monotone Convergence Theorem)

E
[
lim inf

n→∞
Xn

]
≤ lim inf

n→∞
E[Xn], for Xn ≥ 0. (Fatou’s Lemma)

E[Xn]→ E[X∞] for |Xn| ≤ Y with EY < ∞
(Bounded Convergence Theorem)

Conditional Expectation
In what follows, we assume that X and Y are random variables
which need not by real valued, e.g. X = (X1,X2, ...,Xn) or Y = (Yt :
t ∈ Z+), and Z is a real valued random variable.

Formally the conditional expecation should be defined in terms
of sigma-fields. People seem to get scared of these, so we phrase
these properties in terms of (vectors of) random variables and func-
tions of these random variables.
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E[Z|X] := g(X) such that

E[g(X) f (X)] = E[Z f (X)] for all f (Def. E[Z|X])

Eg. take g(x) = E[Z|X = x].

E[E[Z|X] f (X)] = E[Z f (X)]
E[Z1Z2|X] = Z1E[Z2|X] if Z1 = f (X) (Taking out what is known)
E[E[Z|X]|Y] = E[Z|Y] if Y = f (X) (Tower Property)
E[Z|X] = E[Z] if Z, X are independent
E[Z|X,Y] = E[Z|X] if Y is independent of X and Z.

(Role of independence)
E[g(X,Y)|X = x] = E[g(x,Y)] if X and Y are independent.

Martingales and Stopping
We condition with respect to a sequence of random variables, in
particular we let Fn = (X1, ...,Xn) (note Fn is a function of Fn+1 so the
Tower Property of the conditional expecation applies).

Suppose Mn is a sequence of RVs such that Mn is a function of Fn

and |Mn| has finite expectation then we say Mn is a Martingale if

E[Mn|Fn−1] = Mn−1 (Martingale Property)

Also for supermartingales and submartingales

E[Mn|Fn−1] ≤Mn−1 (Supermartingale Property)
E[Mn|Fn−1] ≥Mn−1 (Submartingale Property)

(note b in ’sub’ points up and the p in ’super’ points down in the
same direction of the process.) We abbreviate ’Martingale’ to ’Mg’.

• If Mt is a super-Mg with suptE[|Mt|] < ∞ or Mt ≥ 0 then the limit :

M∞ := lim
n→∞

Mn exists (Doob’s Mg Convergence Thrm)

• If Mt is a positive sub-martingale then

P
(

sup
n≤t

Mn ≥ x
)
≤
E[Mt]

x
(Doob’s Sub-Mg Inequality)
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(This is like Markov’s Inequality)
• If Mt is a Mg and f is convex (with E[| f (Mt)|] < ∞) then f (Mt)
is a submartingale.
• Suppose M is a Mg and has increments bounded by c then

P
(

sup
n≤t

Mn ≥ x
)
≤ exp

{
−

x2

2tc

}
. (Azuma-Hoeffding)

• If Yt is an adapted process (meaning Yt is a function of Ft for all t)
then there exists Zt a previsible process (meaning Zt is a function
of Ft−1 for all t) and Martingale Mt such that

Yt = Y0 + Mt + Zt (Doob-Meyer Decomposition)

moreover this decomposition is unique, with probability 1. More-
over, is Xt is a sub-Mg then Zt is increasing. Moreover, for any Mg
Mt with EM2

t < ∞
M2

t − 〈M〉t is a Mg for .
where 〈M〉t :=

∑t
n=1E[(Mn −Mn−1)2

|Fn−1].
• If M′

t is a positive sub-martingale then, for p > 1 and p−1 + q−1 = 1∥∥∥∥ sup
t

M′

t

∥∥∥∥
p
≤ q sup

t
||M′

t||p = q||M′

∞
||p (Doob’s Lp inequality)

• If Mt is a super-Mg with suptE[|Mt|
p] < ∞ then the limit :

Xn → X∞, w.p. 1 and in Lp (Doob’s Lp Mg Convergence Thrm)

• For Mt a Mg with EM2
t < ∞, ∀t

Mt

〈M〉t
→ 0 on the event {〈M〉∞ = ∞} (Strong Law for Martingales)

where 〈M〉t :=
∑t

n=1E[(Mn −Mn−1)2
|Fn−1].

• Assume Mt is a Mg with bounded increments1

Mt
√
〈M〉t

⇒N(0, 1) (Mg CLT)

• Assume Mt is a Mg with bounded increments(
Mnt
√
〈M〉nt

: t ∈ [0, 1]
)
⇒ (Bt : t ∈ [0, 1]) (Mg CLT - v1)

1This condition can be weakened.
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where (Bt : t ∈ (0, 1)) is a standard Brownian motion. Or, let Mn
t be a

Martingale for each n and suppose (〈Mn
〉t : t ∈ [0, 1]) ⇒ (t : t ∈ [0, 1])

then (
Mn

t
√
〈Mn〉t

: t ∈ [0, 1]
)
⇒ (Bt : t ∈ [0, 1]) (Mg CLT - v2)

Random variable T is a stopping time for Ft, t ≥ 0 if I[T ≤ t] is a
function of Ft, i.e. knowing the values of (X1, ...,Xt) is sufficient to
know if T has happened yet or not.
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A.2 Stochastic Integration

• A heuristic look at the stochastic integral.

• heuristic derivation of Itô’s formula.

What follows is a heuristic proof of Itô’s Formula. (Rigorous
proofs of the exercises are not expected.)

Ex 118 (A Heuristic look at Stochastic Integration). For (Bt : t ≥ 0) a
standard Brownian motion argue that, for all T and for δ sufficiently
small and positive,∑

t∈{0,δ,..,T}

(Bt+δ − Bt) = BT and
∑

t∈{0,δ,..,T}

(Bt+δ − Bt)
2
≈ T

Ans 118. The 1st sum is an interpolating sum. By independent incre-
ments property of Brownian motion, the 2nd sum adds IIDRVs with
each with mean δ. Thus the strong law of large numbers gives the
approximation.

Ex 119 (Continued). Discuss why it is reasonable to expect that∑
t∈{0,δ,..,T}

σ(Xt) (Bt+δ − Bt) ≈
∫ T

0
σ(Xt)dBt

and ∑
t∈{0,δ,..,T}

µ(Xt) (Bt+δ − Bt)
2
≈

∫ T

0
µ(Xt)dt.

Ans 119. The first sum is approximation from a Riemann-Stieltjes
integral, i.e. ∫ T

0
f (t)dg(t) ≈

∑
t∈{0,δ,..,T}

f (t)(g(t + δ) − g(t)).

So one might expect a integral limit. (This is unrigorous because
Riemann-Stieltjes Integration only applies to functionswith finite vari-
ation – while Brownian motion does not have finite variation.)

The second sum is a Riemann integral upon using the approxima-
tion (Bt+δ − Bt)

2
≈ δ [118].
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Ex 120 (Continued). If we inductively define Xt by the recursion

Xt+δ − Xt = σ(Xt)(Bt+δ − Bt) + µ(Xt)δ, t = 0, δ, 2δ, ....

then discuss why we expect Xt to approximately obey an equation of
the form

Xt = X0 +

∫ T

0
σ(Xt)dBt +

∫ T

0
µ(Xt)dt.

Ans 120. Sum to gain XT −X0 and apply approximations from [119].

Ex 121 (Continued). Let f be a twice differentiable function, argue
that

f (Xt+δ) − f (Xt) ≈
[

f ′(Xt)µ(Xt) +
σ(Xt)2

2
f ′′(Xt)

]
δ + f ′(Xt)σ(Xt) (Bt+δ − Bt) .

Ans 121. Apply a Taylor approximation

f (Xt+δ) − f (Xt)
= f (Xt + σ(Xt)(Bt+δ − Bt) + µ(Xt)δ) − f (Xt)

= f ′(Xt)
{
µδ + σ · (Bt+δ − Bt)

}
+

f ′′(Xt)
2

{
µδ + σ · (Bt+δ − Bt)

}2
+ o(δ)

= f ′(Xt)
{
µδ + σ · (Bt+δ − Bt)

}
+

f ′′(Xt)
2

σ2
· (Bt+δ − Bt)2 + o(δ)

In the last equality we use that (Bt+δ − Bt) = o(δ1/2), cf. [118].

Ex 122 (Continued). Argue that

f (XT) − f (X0) =

∫ T

0

[
f ′(Xt)µ(Xt) +

σ(Xt)2

2
f ′′(Xt)

]
dt +

∫ T

0
f ′(Xt)σ(Xt)dBt.

This is Itô’s formula.

Ans 122. Apply an interpolating sum to [121] and then apply [119].

A.3 Gronwall’s Lemma
We introduce a useful integration inequality due to Bellman.
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Thrm 123 (Gronwall’s Lemma). If f : R+ → R+ is bounded above on
each closed interval [0,T] and satisfies

f (T) ≤ a(T) +

∫ T

0
b(t) f (t)dt (A.1)

for increasing function a(t) and positive (integrable) function b(t) then

f (T) ≤ a(T) exp
{∫ T

0
b(t)dt

}
• The most common choices of a and b are constants.

Proof. Consider the function

v(t) = e−
∫ t

0 b(s)ds
∫ t

0
b(s) f (s)ds,

differentiating and applying (A.1) gives

dv(t)
dt

= −b(t)e−
∫ t

0 b(s)ds
∫ t

0
b(s) f (s)ds + b(t) f (t)e−

∫ t
0 b(s)ds

≤ −b(t)e−
∫ t

0 b(s)ds
∫ t

0
b(s) f (s)ds + a(t)b(t)e−

∫ t
0 b(s)ds

+ b(t)e−
∫ t

0 b(s)ds
∫ t

0
b(s) f (s)ds

= a(t)b(t)e−
∫ t

0 b(s)ds.

Integrating and recalling that a(t) is increasing gives

e−
∫ T

0 b(t)dt
∫ T

0
b(t) f (t)dt = v(T) ≤

∫ T

0
a(t)b(t)e−

∫ t
0 b(s)dsdt

≤ a(T)
∫ T

0
b(t)e−

∫ t
0 b(s)dsdt

= a(T)
[
1 − e−

∫ T
0 b(s)ds

]
Thus, applying (A.1) and the above bound

f (T) ≤ a(T) +

∫ T

0
b(t) f (t)dt ≤ a(T) + e

∫ T
0 b(t)dta(T)

[
1 − e−

∫ t
0 b(s)ds

]
= a(T) exp

{∫ T

0
b(t)dt

}
.

�
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A.4 Utility Theory

• Utility functions; equivalence of utility functions

• Relative risk aversion; CRRA Utility and iso-elasticity.

A utility function U(x) is used to quantify the value that you gain
from an outcome x.

Def 124 (Utility Function). For X ⊂ Rd, a utility function is a function
U : X → R that is increasing, i.e. if x ≤ y component-wise then
U(x) ≤ U(y). The utility of a random variable X is then its expected
utility, EU(X). A utility function creates an orderingwhere an outcome
X is preferred to Y if EU(X) ≥ EU(Y).

Jensen’s inequality applies to a concave utility:

EU(X) ≤ U(EX)

So we prefer a certain outcome EX rather than the risky outcome
X that has the same mean – This is being risk averse.

Def 125 (Risk Aversion). If the function is concave then we also say
that the function is risk averse. (Unless stated otherwise we assume
that the utility function is risk averse).

Def 126. We say that two utility functions U and V are equivalent if
they induce the same ordering. I.e. EU(X) ≤ EU(Y) iff EV(X) ≤ EV(Y).

Ex 127. Show that two utility functions are equivalent iff V the same
as U up-to an affine transform, i.e.

V(x) = aU(x) + b

for constants a > 0 and b.

Ans 127. Define φ : R → R s.t. φ(EU(X)) = EV(X). Let X = x w.p.
and X = y w.p. q = 1 − p. Then

φ(pU(x) + qU(y)) = pV(x) + qV(y) = pφ(U(x)) + (1 − p)φ(U(y)).

This implies φ is linear.
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Def 128 (Coefficient of Relative Risk Aversion). For a utility func-
tion U : R → R (twice differentiable) the Coefficient of Relative Risk
Aversion is

−x
U′′(x)
U′(x)

.

Ex 129. You have utility function U. You are offered a bet that in-
creases you wealth w multiplicatively by (1 + X) here X is a “small"
positive is a RV. Discuss why you would accept the bet iff

2EX
EX2 ≥ −x

U′′(x)
U′(x)

I.e. You accept the bet if you mean is large but a large variance makes
this less likely, and the coefficient of relative risk aversion decides the
threshold.

Ans 129. Accept if

0 ≤ E[U(w(1 + X)) −U(w)]
Taylor
≈ E

[
U′(w)wX +

1
2

U′′(w)w2X2
]
.

Def 130 (CRRA Utility/Iso-elastic Utility). A Constant Relative Risk
Averse utility (CRRA) takes the form

U(x) =

x1−R

1−R , R , 1,
log x, R = 1.

Def 131. A utility function is Iso-elastic if it is unchanged under mul-
tiplication: for all c > 0,

EU(X) ≥ EU(Y) iff EU(cX) ≥ EU(cY).

I.e. the utility only cares about the relative magnitude of the risk.

Ex 132. Show that a utility function is iso-elastic iff it is a CRRA
utility (up-to an affine transform).

Ans 132. By [127], its immediate that CRRA implies isolastic. Fur-
ther by [127], ∀c, U(cx) = acU(x) + bc for constants ac and bc. Differen-
tiate twice w.r.t. x and divide gives

cU′′(cx)
U′(cx)

=
U′′(x)
U′(x)

Set x = 1 and integrate twice w.r.t. c gives the required result.
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